
11. Linear Mixed-Effects Models
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The Linear Mixed-Effects Model

y = Xβ + Zu + e

X is an n× p matrix of known constants

β ∈ Rp is an unknown parameter vector

Z is an n× q matrix of known constants

u is a q× 1 random vector

e is an n× 1 vector of random errors
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The Linear Mixed-Effects Model

y = Xβ + Zu + e

The elements of β are considered to be non-random and
are called fixed effects.

The elements of u are random variables and are called
random effects.

The elements of the error vector e are always considered to
be random variables.
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Because the model includes both fixed and random effects
(in addition to the random errors), it is called a mixed-effects
model or, more simply, a mixed model.

The model is called a linear mixed-effects model because
(as we will soon see)

E(y|u) = Xβ + Zu,

a linear function of fixed and random effects.
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We assume that

E(e) = 0 Var(e) = R

E(u) = 0 Var(u) = G

Cov(e, u) = 0.

It follows that
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E(y) = E(Xβ + Zu + e)

= Xβ + ZE(u) + E(e)

= Xβ

Var(y) = Var(Xβ + Zu + e)

= Var(Zu + e)

= Var(Zu) + Var(e)

= ZVar(u)Z′ + R

= ZGZ′ + R ≡ Σ.
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We usually consider the special case in which[
u
e

]
∼ N

([
0
0

]
,

[
G 0
0 R

])

=⇒ y ∼ N(Xβ,ZGZ′ + R).
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The conditional mean and variance, given the random effects,
are

E(y|u) = Xβ + Zu

and

Var(y|u) = R.
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Example 1

Suppose an experiment was conducted to compare the height of
plants grown at two soil moisture levels (labeled 1 and 2). The
soil moisture levels were randomly assigned to 4 pots with 2
pots per moisture level. For each moisture level, 3 seeds were
planted in one pot and 2 seeds were planted in the other. After a
four-week growing period, the height of each seedling was
measured. Let yijk denote the height for soil moisture level i, pot
j, seedling k.
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Consider the model

yijk = µ+ αi + pij + eijk

p11, p12, p21, p22
i.i.d.∼ N(0, σ2

p)

independent of the eijk terms, which are assumed to be iid
N(0, σ2

e ). This model can be written in the form

y = Xβ + Zu + e, where
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y =



y111

y112

y113

y121

y122

y211

y212

y213

y221

y222



, X =



1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1



, β =

 µ

α1

α2

 ,
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Z =



1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1



, u =


p11

p12

p21

p22

 , e =



e111

e112

e113

e121

e122

e211

e212

e213

e221

e222



.
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y111

y112

y113

y121

y122

y211

y212

y213

y221

y222



=



µ+ α1

µ+ α1

µ+ α1

µ+ α1

µ+ α1

µ+ α2

µ+ α2

µ+ α2

µ+ α2

µ+ α2



+



p11

p11

p11

p12

p12

p21

p21

p21

p22

p22



+



e111

e112

e113

e121

e122

e211

e212

e213

e221

e222
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y111 = µ+ α1 + p11 + e111

y112 = µ+ α1 + p11 + e112

y113 = µ+ α1 + p11 + e113

y121 = µ+ α1 + p12 + e121

y122 = µ+ α1 + p12 + e122

y211 = µ+ α2 + p21 + e211

y212 = µ+ α2 + p21 + e212

y213 = µ+ α2 + p21 + e213

y221 = µ+ α2 + p22 + e221

y222 = µ+ α2 + p22 + e222
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G = Var(u) = Var([p11, p12, p21, p22]
′) = σ2

pI4×4

R = Var(e) = σ2
e I10×10

Var(y) = ZGZ′ + R = Zσ2
pIZ′ + σ2

e I = σ2
pZZ′ + σ2

e I.
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ZZ′ =



1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1
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Thus, Var(y) = σ2
pZZ′ + σ2

e I is a block diagonal matrix.

The first block is

Var

 y111

y112

y113

 =

 σ2
p + σ2

e σ2
p σ2

p

σ2
p σ2

p + σ2
e σ2

p

σ2
p σ2

p σ2
p + σ2

e

 .
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Note that

Var(yijk) = σ2
p + σ2

e ∀ i, j, k.

Cov(yijk, yijk∗) = σ2
p ∀ i, j, and k 6= k∗.

Cov(yijk, yi∗j∗k∗) = 0 if i 6= i∗ or j 6= j∗.

Any two observations from the same pot have covariance σ2
p.

Any two observations from different pots are uncorrelated.
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Alternative Derivation of Variances and Covariances

Var(yijk) = Var(µ+ αi + pij + eijk) = Var(pij + eijk)

= Var(pij) + Var(eijk) + Cov(pij, eijk) + Cov(eijk, pij)

= σ2
p + σ2

e + 0 + 0 = σ2
p + σ2

e .

For k 6= k∗,

Cov(yijk, yijk∗) = Cov(µ+ αi + pij + eijk, µ+ αi + pij + eijk∗)

= Cov(pij + eijk, pij + eijk∗)

= Cov(pij, pij) + Cov(pij, eijk∗)

+Cov(eijk, pij) + Cov(eijk, eijk∗)

= Var(pij) + 0 + 0 + 0 = σ2
p.
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Note that Var(y) may be written as σ2
e V where V is a block

diagonal matrix with blocks of the form

1 + σ2
p/σ

2
e σ2

p/σ
2
e . . . σ2

p/σ
2
e

σ2
p/σ

2
e 1 + σ2

p/σ
2
e . . . σ2

p/σ
2
e

. . . .

. . . .

. . . .

σ2
p/σ

2
e σ2

p/σ
2
e . . . 1 + σ2

p/σ
2
e


Thus, if σ2

p/σ
2
e were known, we would have the Aitken Model.

y = Xβ + ε, where ε = Zu + e ∼ N(0, σ2V), σ2 ≡ σ2
e .
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Thus, if σ2
p/σ

2
e were known, we would use GLS to estimate

any estimable Cβ by Cβ̂V = C(X′V−1X)−X′V−1y.

However, we seldom know σ2
p/σ

2
e or, more generally, Σ or V.

For the general problem where Var(y) = Σ is an unknown
positive definite matrix, we can rewrite Σ as σ2V, where σ2 is
an unknown positive variance and V is an unknown positive
definite matrix.

As in our simple example, each entry of V is usually
assumed to be a known function of few unknown
parameters.
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Thus, our strategy for estimating an estimable Cβ involves
estimating the unknown parameters in V to obtain

Cβ̂V̂ = C(X′V̂−1X)−X′V̂−1y.

In general,
Cβ̂V̂ = C(X′V̂−1X)−X′V̂−1y

is an nonlinear estimator that is an approximation to

Cβ̂V = C(X′V−1X)−X′V−1y,

which would be the BLUE of Cβ if V were known.
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In special cases, Cβ̂V̂ may be a linear estimator.

However, even for our simple example involving seedling
height, Cβ̂V̂ is a nonlinear estimator of Cβ for

C = [1, 1, 0] ⇐⇒ Cβ = µ+ α1,

C = [1, 0, 1] ⇐⇒ Cβ = µ+ α2, and

C = [0, 1,−1] ⇐⇒ Cβ = α1 − α2.

Confidence intervals and tests for these estimable functions
are not exact.
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In our simple example involving seedling height, there was
only one random factor (pot).

When there are m random factors, we can partition Z and u
as

Z = [Z1, . . . ,Zm] and u =


u1
...

um

 ,
where uj is the vector of random effects associated with
factor j (j = 1, . . . ,m).
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We can write Zu as

[Z1, . . . ,Zm]


u1
...

um

 =
m∑

j=1

Zjuj.

We often assume that all random effects (including random
errors) are mutually independent and that the random
effects associated with the jth random factor have variance
σ2

j (j = 1, . . . ,m). Under these assumptions,

Var(y) = ZGZ′ + R =
m∑

j=1

σ2
j ZjZ′j + σ2

e I.
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Example 2

Consider an experiment involving 4 litters of 4 animals each.

Suppose 4 treatments are randomly assigned to the 4
animals in each litter.

Suppose we obtain two replicate muscle samples from each
animal and measure the response of interest for each
muscle sample.
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1

1 1

1

2

22

2 4

4 4

4

3

33

3
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Let yijk denote the kth measure of the response for the animal
from litter j that received treatment i

(i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2). Suppose

yijk = µ+ τi + `j + aij + eijk,

where β = [µ, τ1, τ2, τ3, τ4]
′ ∈ R5 is an unknown vector of fixed

parameters,

u = [`1, `2, `3, `4, a11, a21, a31, a41, a12, . . . , a34, a44]
′

is a vector of random effects, and
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e = [e111, e112, e211, e212, e311, e312, e411, e412, . . . , e441, e442]
′

is a vector of random errors.

With

y = [y111, y112, y211, y212, y311, y312, y411, y412, . . . , y441, y442]
′,

we can write the model as a linear mixed-effects model

y = Xβ + Zu + e,

where
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X =



1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1

The matrix
above repeated

three more
times.



, Z =



1 0 0 0 1 0 0 0 . . . 0
1 0 0 0 1 0 0 0 . . . 0
1 0 0 0 0 1 0 0 . . . 0
1 0 0 0 0 1 0 0 . . . 0
1 0 0 0 0 0 1 0 . . . 0
1 0 0 0 0 0 1 0 . . . 0
1 0 0 0 0 0 0 1 . . . 0
1 0 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
. . .

...
0 0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 1
0 0 0 1 0 0 0 0 . . . 1
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Kronecker Product Notation

A⊗ B =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⊗ B

=


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB
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We can write less and be more precise using Kronecker product

notation.

X = 1
4×1
⊗ [ 1

8×1
, I

4×4
⊗ 1

2×1
], Z = [ I

4×4
⊗ 1

8×1
, I

16×16
⊗ 1

2×1
].

In this experiment, we have two random factors: litter and animal.

We can partition our random effects vector u into a vector of litter

effects and a vector of animal effects:
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u =

[
`

a

]
, ` =


`1

`2

`3

`4

 , a =



a11

a21

a31

a41

a12
...

a44


.

We make the usual assumption that

u =

[
`

a

]
∼ N

([
0
0

]
,

[
σ2
` I 0
0 σ2

aI

])
,

where σ2
` , σ

2
a ∈ R+ are unknown parameters.
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We can partition

Z = [ I
4×4
⊗ 1

8×1
, I

16×16
⊗ 1

2×1
]

= [Z`,Za].

We have

Zu = [Z`,Za]

[
`

a

]
= Z``+ Zaa

and
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Var(Zu) = ZGZ′

= [Z`,Za]

[
σ2
` I 0
0 σ2

aI

][
Z′`
Z′a

]
= Z`(σ

2
` I)Z′` + Za(σ

2
aI)Z′a

= σ2
`Z`Z′` + σ2

aZaZ′a

= σ2
` I

4×4
⊗ 11′

8×8
+ σ2

a I
16×16

⊗ 11′
2×2

.
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We usually assume that all random effects and random errors are

mutually independent and that the errors (like the effects within each

factor) are identically distributed:
`

a

e

 ∼ N




0
0
0

 ,

σ2
` I 0 0
0 σ2

aI 0
0 0 σ2

e I


 .

The unknown variance parameters σ2
` , σ

2
a, σ

2
e ∈ R+ are called variance

components.
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In this case, we have R = Var(e) = σ2
e I.

Thus,

Var(y) = ZGZ′ + R

= σ2
`Z`Z′` + σ2

aZaZ′a + σ2
e I.

This is a block diagonal matrix with a block as follows.

(To get a block to fit on one slide, let ` = σ2
` , a = σ2

a, e = σ2
e ).
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`+ a + e `+ a ` ` ` ` ` `

`+ a `+ a + e ` ` ` ` ` `

` ` `+ a + e `+ a ` ` ` `

` ` `+ a `+ a + e ` ` ` `

` ` ` ` `+ a + e `+ a ` `

` ` ` ` `+ a `+ a + e ` `

` ` ` ` ` ` `+ a + e `+ a

` ` ` ` ` ` `+ a `+ a + e
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Random Effects Specify the Correlation Structure

1

1 1

1

2

22

2 4

4 4

4

3

33

3
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Without the mouse random effects, our model would correspond to an

RCBD with 2 mice per treatment per litter.

3 2 1 3

4 3 3 4

2 1 2 2

1 4 4 1

3 2 1 3

2 3 4 2

4 1 1 4

4 1 2 3
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With no random effects, our model would correspond to a CRD with 8

mice per treatment.

3 4 1 3

4 4 3 4

2 1 3 2

1 4 4 1

3 2 1 3

2 3 4 2

4 1 1 1

2 2 2 3
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Review of Experimental Design Terminology

Experiment – An investigation in which the investigator applies some

treatments to experimental units and then observes the effect of the

treatments on the experimental units by measuring one or more

response variables.
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Treatment – a condition or set of conditions applied to experimental

units in an experiment.

Experimental Unit – the physical entity to which a treatment is

randomly assigned and independently applied.
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Response Variable – a characteristic of an experimental unit that is

measured after treatment and analyzed to assess the effects of

treatments on experimental units.

Observational Unit – the unit on which a response variable is

measured.

There is often a one-to-one correspondence between experimental

units and observational units, but that is not always true.
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In our example involving plant heights and soil moisture levels, pots

were the experimental units because soil moisture levels were

randomly assigned to pots.

Seedlings were the observational units because the response was

measured separately for each seedling.

Whenever there is more than one observational unit for an

experimental unit or whenever the response is measured multiple

times for an experimental unit, we say we have multiple observations

per experiment unit.

This scenario is also referred to as subsampling or pseudo-replication.
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Whenever an experiment involves multiple observations per

experimental unit, it is important to include a random effect for each

experimental unit.

Without a random effect for each experimental unit, a one-to-one

correspondence between observations and experimental units is

assumed.

Including random effects in a model is one way to account for a lack of

independence among observations that might be expected based on

the design of an experiment.
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Completely Randomized Design (CRD) – experimental design in

which, for given number of experiment units per treatment, all possible

assignments of treatments to experimental units are equally likely.

Block – a group of experimental units that, prior to treatment, are

expected to be more like one another (with respect to one or more

response variables) than experimental units in general.

Randomized Complete Block Design (RCBD) – experimental design in

which separate and completely randomized treatment assignments are

made for each of multiple blocks in such a way that all treatments have

at least one experimental unit in each block.
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Blocking – grouping similar experimental units together and assigning

different treatments within such groups of experimental units.

The experiment involving muscle samples from mice used blocking.

Each litter was a block in that experiment.

Each mouse was an experimental unit.

Each muscle sample was an observational unit.
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