
22. Additional Topics
Related to Likelihood
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Information Criteria

Akaike’s Information criterion is given by

AIC = −2`(θ̂) + 2k,

where `(θ̂) is the maximized log likelihood and k is the
dimension of the model parameter space.
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AIC = −2`(θ̂) + 2k can be used to determine
which of multiple models is “best” for a given data
set.

Small values of AIC are preferred.

The +2k portion of AIC can be viewed as a
penalty for model complexity.
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Schwarz’s Bayesian Information Criterion is given by

BIC = −2`(θ̂) + k ln(n)

BIC is the same as AIC except the penalty for model
complexity is greater for BIC (when n ≥ 8) and grows
with n.
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AIC and BIC can each be used to compare
models even if they are not nested (i.e., even if
one is not a special case of the other as in our
reduced vs. full model comparison discussed
previously).

However, if REML likelihoods are used, compared
models must have the same model for the
response mean.

Different models for the mean would yield different
error contrasts and different datasets for
computation of maximized REML likelihoods.
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Large n Theory for MLEs

Suppose θ is a k × 1 parameter vector.

Let `(θ) denote the log likelihood function.

Under regularity conditions discussed in, e.g.,
Shao, J.(2003) Mathematical Statistics, 2nd Ed.
Springer, New York; we have the following.
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There is an estimator θ̂ that solves the score
equations ∂`(θ)

∂θ = 0 and has the following properties.

1 Consistency of θ̂:

θ̂ is a (weakly) consistent estimator of θ.

This means that θ̂ converges in probability to θ,
i.e.,

lim
n→∞

Pr[||θ̂ − θ|| > ε] = 0 for any ε > 0.
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2 Asymptotic normality of θ̂:

For sufficiently large n, θ̂ •∼ N(θ, I−1(θ)), where

I(θ) = E
[(

∂`(θ)

∂θ

)(
∂`(θ)

∂θ

)′]
= −E

[
∂2`(θ)

∂θ∂θ′

]
=

[
−E
{
∂2`(θ)

∂θi∂θj

}]
i,j∈{1,...,k}

Copyright c©2019 (Iowa State University) 22. Statistics 510 8 / 34



I(θ) is known as the Fisher Information matrix.

I(θ) can be approximated by the replacing the
unknown θ with θ̂ to obtain I(θ̂).

An alternative approximation is given by the
observed Fisher Information matrix:

Î(θ̂) ≡ −∂
2`(θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂
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In practice, when n is sufficiently large, we use the
approximation

θ̂
•∼ N(θ, V̂ar(θ̂)),

where V̂ar(θ̂) can be either I−1(θ̂) or Î
−1

(θ̂).

Although such statements do a reasonable job of
conveying the idea of approximations we use, they
are not mathematically rigorous.
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When we say something like

θ̂
•∼ N(θ, V̂ar(θ̂)) for sufficiently large n,

we mean that as n grows to infinity,

[V̂ar(θ̂)]−1/2(θ̂ − θ)

converges in distribution to a standard multivariate
normal random vector z ∼ N(0, I):

[V̂ar(θ̂)]−1/2(θ̂ − θ)
d→ z
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Note that
[V̂ar(θ̂)]−1/2(θ̂ − θ)

d→ z

implies

{[V̂ar(θ̂)]−1/2(θ̂ − θ)}′{[V̂ar(θ̂)]−1/2(θ̂ − θ)} d→ z′z

which implies

(θ̂ − θ)′[V̂ar(θ̂)]−1(θ̂ − θ)
•∼ χ2

k

for sufficiently large n.
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A Simple Example
Suppose y1, . . . , yn

i.i.d.∼ Poisson(θ).

For yi ∈ {0, 1, 2, . . .} ∀ i = 1, . . . , n,

L(θ|y) =
n∏

i=1

θyie−θ

yi!

`(θ|y) =
n∑

i=1

[yi ln(θ)− θ − ln(yi!)]

= ln(θ)
n∑

i=1

yi − nθ −
n∑

i=1

ln(yi!)

∂`(θ|y)

∂θ
=

1
θ

n∑
i=1

yi − n
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Thus, the score equation is

1
θ

n∑
i=1

yi − n = 0.

The only solution to the score equation is θ̂ = ȳ·

Result (1) on slide 7 implies θ̂ = ȳ· converges in probability to θ.

In this case, we also know that ȳ· converges in probability to θ by
the (Weak) Law of Large Numbers (WLLN).
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Result (2) on slide 8 implies θ̂ = ȳ·
•∼ N(θ, I−1(θ)).

I(θ) = −E
[
∂2`(θ|y)

∂θ∂θ

]
= −E

[
∂

∂θ

(
1
θ

n∑
i=1

yi − n

)]

= −E

[
− 1
θ2

n∑
i=1

yi

]
=

1
θ2

n∑
i=1

E(yi) =
n
θ

Therefore, I−1(θ) = θ/n in this case.

Thus, result (2) on slide 8 implies θ̂ = ȳ·
•∼ N(θ, θ/n), which is

also implied by the Central Limit Theorem (CLT).
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To get an estimate of the variance of θ̂ = ȳ·, we can use

I−1(θ̂) = θ̂/n = ȳ·/n

Alternatively, the inverse of the observed Fisher information in
this case is

Î−1(θ̂) =

[
−∂2`(θ)

∂θ∂θ

∣∣∣∣
θ=θ̂

]−1

=

[
1

θ̂2

n∑
i=1

yi

]−1

=

[
nȳ·
ȳ2
·

]−1

= ȳ·/n

Thus, I−1(θ̂) = Î−1(θ̂) in this case.

Substituting in this consistent estimator for I−1(θ), we have
θ̂ = ȳ·

•∼ N(θ, ȳ·/n)
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Wald Tests and Confidence Intervals

Suppose for large n that

θ̂
•∼ N(θ, V̂ar(θ̂)).

Then a confidence interval for c′θ that has confidence
level approximately equal to 1− α is

c′θ̂ ± z1−α/2

√
c′V̂ar(θ̂)c,

where z1−α/2 is the 1− α/2 quantile of the N(0, 1)
distribution.
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Likewise, a test of H0 : c′θ = d can be based on the
test statistic

c′θ̂ − d√
c′V̂ar(θ̂)c

,

which has a distribution that is approximately N(0, 1)
under H0.
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Likewise, if C is a q× k matrix of rank q, a test of
H0 : Cθ = d can be based on the test statistic

(Cθ̂ − d)′[CV̂ar(θ̂)C′]−1(Cθ̂ − d),

which has a distribution that is approximately χ2
q

under H0.
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Multivariate Delta Method

Suppose g is a function from Rk to Rm, i.e.,

for θ ∈ Rk, g(θ) =


g1(θ)
g2(θ)

...
gm(θ)


for some functions g1, . . . , gm.
Suppose g is differentiable with derivative matrix

D ≡


∂g1(θ)
∂θ1

· · · ∂gm(θ)
∂θ1... . . . ...

∂g1(θ)
∂θk

· · · ∂gm(θ)
∂θk

 .
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Now suppose θ̂ has mean θ and variance Var(θ̂).
Then Taylor’s Theorem implies

g(θ̂) ≈ g(θ) + D′(θ̂ − θ)

which implies

E[g(θ̂)] ≈ g(θ) + D′E(θ̂ − θ) = g(θ)

and

Var[g(θ̂)] ≈ Var[g(θ) + D′(θ̂ − θ)] = D′Var(θ̂)D.
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If θ̂ •∼ N(θ,Var(θ̂)), it follows that

g(θ̂)
•∼ N(g(θ),D′Var(θ̂)D).

In practice, we often need to estimate D by
replacing θ in D with θ̂ to obtain D̂.

Similarly, we often need to replace Var(θ̂) with an
estimate V̂ar(θ̂).

g(θ̂)
•∼ N(g(θ), D̂

′
V̂ar(θ̂)D̂)
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Delta Method Example with k = 1
×
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Likelihood Ratio Based Inference

Suppose we wish to test the null hypothesis that a
reduced model provides an adequate fit to a dataset
relative to a more general full model that includes the
reduced model as a special case.
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Define Λ as
Reduced Model Maximized Likelihood

Full Model Maximized Likelihood
.

Λ is known as the likelihood ratio.

−2 ln(Λ) is known as the likelihood ratio test
statistic.

Tests based on −2 ln(Λ) are called likelihood ratio
tests.
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Under the regularity conditions in Shao (2003)
mentioned previously, the likelihood ratio test
statistic −2 ln(Λ) is approximately distributed as
central χ2

kf−kr
under the null hypothesis, where kf

and kr are the dimensions of the parameter space
under the full and reduced models, respectively.

This approximation can be reasonable if n is
“sufficiently large.”
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Likelihood Ratio Tests and Confidence Regions for a
Subvector of the Full Model Parameter Vector θ

Suppose θ is k × 1 vector and is partitioned into
vectors θ1 k1 × 1 and θ2 k2 × 1, where k = k1 + k2

and θ =

[
θ1

θ2

]
.

Consider a test of H0 : θ1 = d1.
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Suppose θ̂ is the MLE of θ and θ̂2(θ1) maximizes

`

([
θ1

θ2

])
over θ2 for any fixed value of θ1.

Then 2
[
`(θ̂)− `

([
d1

θ̂2(d1)

])]
is approximately

χ2
k1

under the null hypothesis by our previous
result when n is “sufficiently large.”
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Also,

Pr
{

2
[
`(θ̂)− `

([
θ1

θ̂2(θ1)

])]
≤ χ2

k1,1−α

}
≈ 1− α

which implies

Pr
{
`

([
θ1

θ̂2(θ1)

])
≥ `(θ̂)− 1

2
χ2

k1,1−α

}
≈ 1− α.
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Thus, the set of values of θ1 that, when
maximizing over θ2, yield a maximized likelihood
within 1

2χ
2
k1,1−α of the likelihood maximized over all

θ, form a 100(1− α)% confidence region for θ1.

Such a confidence region is known as a profile
likelihood confidence region because

`

([
θ1

θ̂2(θ1)

])
is the profile log likelihood for θ1.
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Sketch for the Case of k = 1
×
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Sketch for the Case of k = 2
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Sketch for the Case of k1 = 1 and k2 Arbitrary
×
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Warnings

The normal and χ2 approximations mentioned in
these notes may be crude if sample sizes are not
sufficiently large.

The regularity conditions mentioned in these
notes do not hold if the true parameter falls on the
boundary of the parameter space. Thus, as an
example, testing H0 : σ2

u = 0 is not covered by the
methods presented here.
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