22. Additional Topics
Related to Likelihood
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Information Criteria

Akaike’s Information criterion is given by

A

AIC = —20() + 2,

where ¢(0) is the maximized log likelihood and k is the
dimension of the model parameter space.
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A

o AlIC = —2/(0) + 2k can be used to determine
which of multiple models is “best” for a given data
set.

e Small values of AIC are preferred.

e The +2k portion of AIC can be viewed as a
penalty for model complexity.
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Schwarz’s Bayesian Information Criterion is given by

BIC = —2/(0) + k1n(n)

BIC is the same as AIC except the penalty for model
complexity is greater for BIC (when n > 8) and grows
with n.
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e AIC and BIC can each be used to compare
models even if they are not nested (i.e., even if
one is not a special case of the other as in our
reduced vs. full model comparison discussed
previously).

e However, if REML likelihoods are used, compared
models must have the same model for the
response mean.

e Different models for the mean would yield different
error contrasts and different datasets for
computation of maximized REML likelihoods.
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Large n Theory for MLEs

e Suppose 0 is a k x 1 parameter vector.
e Let ¢(0) denote the log likelihood function.

e Under regularity conditions discussed in, e.g.,
Shao, J.(2003) Mathematical Statistics, 2" Ed.
Springer, New York; we have the following.
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There is an estimator 8 that solves the score
equations 89) 0 and has the following properties.

@ Consistency of 6:

0 is a (weakly) consistent estimator of 6.

This means that 8 converges in probability to 6,
i.e.,

lim Pr{||@ — @]| > ¢] = 0 for any ¢ > 0.

n—o0
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@ Asymptotic normality of 6:
For sufficiently large n, 8 ~ N(6,1°'(9)), where

o) = (%) (%50") |
B 520(0)
=k [3909’]

2
[_E {6 0(0) }]
89,-8@- ije{l,... .k}
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e I1(0) is known as the Fisher Information matrix.

o I(6) can be approximated by the replacing the
unknown 6 with 6 to obtain 1(6).

e An alternative approximation is given by the
observed Fisher Information matrix:
—0°0(9)
0000 |,_s

1(6)
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In practice, when n is sufficiently large, we use the
approximation
6~ N(6, Var(6)),

1 -

where Var() can be either I"'(8) or I (6).

Although such statements do a reasonable job of
conveying the idea of approximations we use, they
are not mathematically rigorous.
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When we say something like
6~ N8, Var( 9)) for sufficiently large n,
we mean that as n grows to infinity,
[Var(8)]~'/*(6 — 6)

converges in distribution to a standard multivariate
normal random vector z ~ N(0,1):

[Var(6)]~'/%(6 — 6) %
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Note that o )
[Var(8)] /(0 — 0) % z

implies
{[Var(8)]"/2(8 — 0)}' {[Var(8)] /(6 — 0)} % 2’z
which implies
(6 — 0)[Var(0)]7'(0 — 0) * x}

for sufficiently large n.
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A Simple Example

@ Suppose yi,..., ¥, i Poisson().

e Fory, €{0,1,2,...}Vi=1,...,n,

n

Loy = 125

|
-1 O

(@Oy) = Z[Yi In(0) — 0 — In(y;!)]

= In(0) iy,- —nf — i In(y!)
i=1 i=1

ooy 1
00 9;” "
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Thus, the score equation is

1 n
i=1
The only solution to the score equation is 6 = .

Result (1) on slide 7 implies § = y. converges in probability to 6.

In this case, we also know that y. converges in probability to 6 by
the (Weak) Law of Large Numbers (WLLN).
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Result (2) on slide 8 implies 0 = y. ~ N(0,17'(9)).

2(5-)

o 2 > B IRE:

100) = —E Wﬁ(%)} _E

| 9600

Therefore, I7'(0) = 6/n in this case.

Thus, result (2) on slide 8 implies 6 = y. ~ N(0,0/n), which is
also implied by the Central Limit Theorem (CLT).
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To get an estimate of the variance of § = y., we can use

I7'(0)=6/n=y./n

Alternatively, the inverse of the observed Fisher information in
this case is

~

Thus, I-1(d) = I-'(6) in this case.

Substituting in this consistent estimator for 7-'(¢), we have
0=3 ~N(0,y./n)
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Wald Tests and Confidence Intervals

Suppose for large n that
6 * N(6, Var(6)).

Then a confidence interval for ¢’0 that has confidence
level approximately equalto 1 — « is

¢'0+ zl_a/zvc’\/f;r(é)c,

where z,_,, is the 1 — a/2 quantile of the N(0, 1)
distribution.
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Likewise, a test of Hy : ¢'0 = d can be based on the

test statistic A

c'0—d

c’\//z?r(é)c
which has a distribution that is approximately N(0, 1)
under H,.
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Likewise, if C is a ¢ x kK matrix of rank ¢, a test of
H, : CO = d can be based on the test statistic

(CO — d)'[CVar(0)C'| ' (CO — d),

which has a distribution that is approximately Xf,
under H,.
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Multivariate Delta Method

e Suppose g is a function from R* to R™, i.e.,

82(0)

for & ¢ R¥ g(0) =

gm(0)
for some functions gi, ..., gnu.

e Suppose g is differentiable with derivative matrix

dg1(0) Jgm(0)
00, 00,
D = : . :
981(0) .. Ogm(6)
00 00y
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Now suppose 6 has mean 6 and variance Var().
Then Taylor’s Theorem implies

2(0) ~g(6) +D'(0 - 6)
which implies
E[g(6)] ~g(6) + D'E(6 — 0) = g(6)
and
Var[g(0)] ~ Var[g(8) +D'(6 — 0)] = D'Var(6)D.
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o If 6 X N(0, Var(0)), it follows that
g(0) * N(g(6),D'Var(9)D).

o In practice, we often need to estimate D by
replacing @ in D with 6 to obtain D.

A

o Similarly, we often need to replace Var(6) with an
estimate Var(0).
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Delta Method Example with £ = 1
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Likelihood Ratio Based Inference

Suppose we wish to test the null hypothesis that a
reduced model provides an adequate fit to a dataset
relative to a more general full model that includes the
reduced model as a special case.
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e Define A as

Reduced Model Maximized Likelihood
Full Model Maximized Likelihood

e A is known as the likelihood ratio.

e —2In(A) is known as the likelihood ratio test
statistic.

e Tests based on —21In(A) are called likelihood ratio
tests.
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e Under the regularity conditions in Shao (2003)
mentioned previously, the likelihood ratio test
statistic —21n(A) is approximately distributed as
central Xk _ under the null hypothesis, where k¢
and k, are the dimensions of the parameter space
under the full and reduced models, respectively.

e This approximation can be reasonable if n is
“sufficiently large.”
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Likelihood Ratio Tests and Confidence Regions for a
Subvector of the Full Model Parameter Vector 6

e Suppose @ is k x 1 vector and is partitioned into
vectors 0, k; x 1 and 6, k, x 1, where k = k| + k,
_| o
and 0 = [ 0, ]

e Consider atestof Hy: 6, = d,.
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o Suppose 6 is the MLE of 8 and 6,(8,) maximizes

/ ([ gl D over 6, for any fixed value of ;.
2

o Then 2 [é(é) .y ([ é;fclll) D] is approximately

Xz, under the null hypothesis by our previous
result when n is “sufficiently large.”
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Also,

Pr{z {g(é) - ([ é’2(?‘;’1) D] = X%“I_a} ~ioe

which implies

o {g <[ 92?‘191) D > 46) - %X%"l_a} mloe
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e Thus, the set of values of 0, that, when
maximizing over 6,, yield a maximized likelihood
within 3x7 _, of the likelihood maximized over all
0, form a 100(1 — «)% confidence region for 6.

e Such a confidence region is known as a profile
likelihood confidence region because

(Lo )

is the profile log likelihood for 6.
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Sketch for the Case of k =1
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Sketch for the Case of k =2
0,
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Sketch for the Case of k; = 1 and k, Arbitrary
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Warnings

e The normal and y? approximations mentioned in
these notes may be crude if sample sizes are not
sufficiently large.

e The regularity conditions mentioned in these
notes do not hold if the true parameter falls on the
boundary of the parameter space. Thus, as an
example, testing H, : 02 = 0 is not covered by the
methods presented here.
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