A Generalized Linear Model for Bernoulli Response Data
Consider the Gauss-Markov linear model with normal errors:

\[y = X\beta + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I). \]

Another way to write this model is

\[\forall \, i = 1, \ldots, n, \quad y_i \sim N(\mu_i, \sigma^2), \quad \mu_i = x'_i\beta, \]

and \(y_1, \ldots, y_n \) are independent.
This is a special case of what is known as a generalized linear model.

Here is another special case:

\[\forall \ i = 1, \ldots, n, \quad y_i \sim \text{Bernoulli}(\pi_i), \]

\[\pi_i = \frac{\exp(x_i'\beta)}{1 + \exp(x_i'\beta)}, \]

and \(y_1, \ldots, y_n \) are independent.
In each example, all responses are independent, and each response is a draw from one type of distribution whose parameters may depend on explanatory variables through a linear predictor $x'_i \beta$.
The second model, for the case of a binary response, is often called a logistic regression model.

Binary responses are common (success/failure, survive/die, good customer/bad customer, win/lose, etc.)

The logistic regression model can help us understand how explanatory variables are related to the probability of “success.”
Example: Disease Outbreak Study

In a health study to investigate an epidemic outbreak of a disease that is spread by mosquitoes, individuals were randomly sampled within two sectors in a city to determine if the person had recently contracted the disease under study.
Response Variable

\[y_i = 0 \] (person \(i \) does not have the disease)

\[y_i = 1 \] (person \(i \) has the disease)
Potential Explanatory Variables

- age in years
- socioeconomic status
 - $1 = \text{upper}$
 - $2 = \text{middle}$
 - $3 = \text{lower}$
- sector (1 or 2)
Questions of Interest

The potential explanatory variables and the response were recorded for 196 randomly selected individuals. Are any of these variables associated with the probability of disease and if so how?
We will demonstrate how to use R to fit a logistic regression model to this dataset.

Before delving more deeply into logistic regression, we will review the basic facts of the Bernoulli distribution.
$y \sim \text{Bernoulli}(\pi)$ has probability mass function

$$Pr(y = k) = f(k) = \begin{cases}
\pi^k (1 - \pi)^{1-k} & \text{for } k \in \{0, 1\} \\
0 & \text{otherwise}
\end{cases}$$

Thus,

$$Pr(y = 0) = f(0) = \pi^0 (1 - \pi)^{1-0} = 1 - \pi$$

and

$$Pr(y = 1) = f(1) = \pi^1 (1 - \pi)^{1-1} = \pi.$$
The variance of y is a function of the mean of y.

$$
E(y) = \sum_{k=0}^{1} kf(k) = 0 \cdot (1 - \pi) + 1 \cdot \pi = \pi
$$

$$
E(y^2) = \sum_{k=0}^{1} k^2 f(k) = 0^2 \cdot (1 - \pi) + 1^2 \cdot \pi = \pi
$$

$$
\text{Var}(y) = E(y^2) - [E(y)]^2 = \pi - \pi^2 = \pi(1 - \pi)
$$
The Logistic Regression Model

For $i = 1, \ldots, n$, $y_i \sim \text{Bernoulli}(\pi_i)$,

where

$$\pi_i = \frac{\exp(x'_{i}/\beta)}{1 + \exp(x'_{i}/\beta)}$$

and y_1, \ldots, y_n are independent.
The Logit Function

The function

\[g(\pi) = \log \left(\frac{\pi}{1 - \pi} \right) \]

is called the logit function.

The logit function maps the interval \((0, 1)\) to the real line \((-\infty, \infty)\).

\(\pi\) is a probability, so \(\log\left(\frac{\pi}{1-\pi}\right)\) is the log(odds), where the odds of an event \(A\) is \(\frac{Pr(A)}{1-Pr(A)}\).
Note that

\[g(\pi_i) = \log \left(\frac{\pi_i}{1 - \pi_i} \right) = \log \left[\frac{\exp(x'_i/\beta)}{1 + \exp(x'_i/\beta)} \right] / \frac{1}{1 + \exp(x'_i/\beta)} \]

\[= \log[\exp(x'_i/\beta)] = x'_i/\beta. \]
Thus, the logistic regression model says that,

\[y_i \sim \text{Bernoulli}(\pi_i), \text{ where} \]

\[\log \left(\frac{\pi_i}{1 - \pi_i} \right) = x_i' \beta \]

In Generalized Linear Models terminology, the logit is called the link function because it “links” the mean of \(y_i \) (i.e., \(\pi_i \)) to the linear predictor \(x_i' \beta \).
For Generalized Linear Models, it is not necessary that the mean of y_i be a linear function of β.

Rather, some function of the mean of y_i is a linear function of β.

For logistic regression, that function is

$$\logit(\pi_i) = \log \left(\frac{\pi_i}{1 - \pi_i} \right) = \mathbf{x}_i'\beta.$$
When the response is Bernoulli or more generally, binomial, the logit link function is one natural choice. However, other link functions can be considered.

Some common choices (that are also available in R) include the following:
1. logit:

\[\log \left(\frac{\pi}{1 - \pi} \right) = x' \beta. \]

2. probit:

\[\Phi^{-1}(\pi) = x' \beta, \]

where \(\Phi^{-1}(\cdot) \) is the inverse of \(\mathcal{N}(0, 1) \) CDF.

3. Complementary log-log (cloglog in R):

\[\log(-\log(1 - \pi)) = x' \beta. \]
Although any of these link functions (or others) can be used, the logit link has some advantages when it comes to interpreting the results (as we will discuss later).

Thus, the logit link is a good choice if it can provide a good fit to the data.
The log likelihood function for logistic regression is

\[\ell(\beta \mid y) = \sum_{i=1}^{n} \log[\pi_i^{y_i}(1 - \pi_i)^{1-y_i}] \]

\[= \sum_{i=1}^{n} [y_i \log(\pi_i) + (1 - y_i) \log(1 - \pi_i)] \]

\[= \sum_{i=1}^{n} [y_i \{\log(\pi_i) - \log(1 - \pi_i)\} + \log(1 - \pi_i)] \]

\[= \sum_{i=1}^{n} \left[y_i \log \left(\frac{\pi_i}{1 - \pi_i} \right) + \log(1 - \pi_i) \right] \]

\[= \sum_{i=1}^{n} [y_i \mathbf{x}_i'\beta - \log(1 + \exp\{\mathbf{x}_i'\beta\})] \]
For Generalized Linear Models, Fisher’s Scoring Method is typically used to obtain an MLE for β, denoted as $\hat{\beta}$.

Fisher’s Scoring Method is a variation of the Newton-Raphson algorithm in which the Hessian matrix (matrix of second partial derivatives) is replaced by its expected value (-Fisher Information matrix).
For generalized Linear Models, Fisher’s scoring method results in an iterative weighted least squares procedure.

The algorithm is presented for the general case in Section 2.5 of *Generalized Linear Models* 2nd Edition (1989) by McCullough and Nelder.
For sufficiently large samples, $\hat{\beta}$ is approximately normal with mean β and a variance-covariance matrix that can be approximated by the estimated inverse of the Fisher Information Matrix; i.e.,

$$\hat{\beta} \sim N(\beta, \hat{I}^{-1}(\hat{\beta}))$$
Inference can be conducted using the Wald approach or via likelihood ratio testing as discussed in our course notes on likelihood-related topics.

For example, a Wald confidence interval for $c'\beta$ with approximate coverage probability of 0.95 is given by

$$c'\hat{\beta} \pm 1.96 \sqrt{c'\hat{I}^{-1}(\hat{\beta})c}$$
Interpretation of Logistic Regression Parameters

Let \(x = [x_1, x_2, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_p]' \).

Let \(\tilde{x} = [x_1, x_2, \ldots, x_{j-1}, x_j + 1, x_{j+1}, \ldots, x_p]' \).

In other words, \(\tilde{x} \) is the same as \(x \) except that the \(j \)th explanatory variable has been increased by one unit.

Let \(\pi = \frac{\exp(x'\beta)}{1 + \exp(x'\beta)} \) and \(\tilde{\pi} = \frac{\exp(\tilde{x}'\beta)}{1 + \exp(\tilde{x}'\beta)} \).
The Odds Ratio

\[
\frac{\tilde{\pi}}{1 - \tilde{\pi}} \div \frac{\pi}{1 - \pi} = \exp \left\{ \log \left(\frac{\tilde{\pi}}{1 - \tilde{\pi}} \right) - \log \left(\frac{\pi}{1 - \pi} \right) \right\}
\]

\[
= \exp \left\{ (\tilde{x}'/\beta - x'/\beta) \right\}
\]

\[
= \exp \left\{ (x_j + 1)\beta_j - x_j\beta_j \right\}
\]

\[
= \exp \{ \beta_j \}.
\]
Thus, \[\frac{\tilde{\pi}}{1 - \tilde{\pi}} = \exp(\beta_j) \cdot \frac{\pi}{1 - \pi}. \]

All other explanatory variables held constant, the odds of success at \(x_j + 1 \) are \(\exp(\beta_j) \) times the odds of success at \(x_j \).

This is true regardless of the initial value \(x_j \).
A one unit increase in the jth explanatory variable (with all other explanatory variables held constant) is associated with a multiplicative change in the odds of success by the factor $\exp(\beta_j)$.
\[P(L_j \leq \beta_j \leq U_j) = 100(1 - \alpha)\% \]

\[\iff P(\exp(L_j) \leq \exp(\beta_j) \leq \exp(U_j)) = 100(1 - \alpha)\% \]

If \((L_j, U_j)\) is a \(100(1 - \alpha)\%\) confidence interval for \(\beta_j\), then

\[(\exp(L_j), \exp(U_j)) \]

is a \(100(1 - \alpha)\%\) confidence interval for \(\exp(\beta_j)\).
Also, note that

$$
\pi = \frac{\exp(x'\beta)}{1 + \exp(x'\beta)} = \frac{1}{\exp(x'\beta) + 1}
$$

$$
= \frac{1}{1 + \exp(-x'\beta)}.
$$

Thus, if (L_j, U_j) is a $100(1 - \alpha)\%$ confidence interval for $x'\beta$, then a $100(1 - \alpha)\%$ confidence interval for π is

$$
\left(\frac{1}{1 + \exp(-L_j)}, \frac{1}{1 + \exp(-U_j)}\right).
$$
> d = read.delim("http://dnett.github.io/S510/Disease.txt")
> head(d)

```
id  age  ses sector disease  savings
1   1   33   1     1      0   1
2   2   35   1     1      0   1
3   3   6    1     1      0   0
4   4   60   1     1      0   1
5   5   18   3     1      1   0
6   6   26   3     1      0   0
```

> d$ses = factor(d$ses)
> d$sector = factor(d$sector)

WE IGNORE THIS VARIABLE IN THIS EXAMPLE.
> o=glm(disease~age+ses+sector,
+ family=binomial(link=logit),
+ data=d)
> summary(o)

Call:
glm(formula = disease ~ age + ses + sector,
 family = binomial(link = logit),
 data = d)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.6576 -0.8295 -0.5652 1.0092 2.0842

We will learn about these later.
Coefficients:

| Term | Estimate | Std. Error | z value | Pr(>|z|) |
|-----------|----------|------------|---------|---------|
| (Intercept) | -2.293933 | 0.436769 | -5.252 | 1.5e-07 *** |
| age | 0.026991 | 0.008675 | 3.111 | 0.001862 ** |
| ses2 | 0.044609 | 0.432490 | 0.103 | 0.917849 |
| ses3 | 0.253433 | 0.405532 | 0.625 | 0.532011 |
| sector2 | 1.243630 | 0.352271 | 3.530 | 0.000415 *** |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

We will learn about this later.
Null Model: $\text{logit}(\pi_i) = \mu$ \hspace{1cm} ($\pi_1 = \pi_2 = \cdots = \pi_n$)

Full Model: $\text{logit}(\pi_i) = x_i' \beta$

Null deviance: 236.33 on 195 degrees of freedom
Residual deviance: 211.22 on 191 degrees of freedom
AIC: 221.22

$-2 \ell_o(\hat{\mu}) \quad n-1$

$-2 \ell_f(\hat{\beta}) + 2(5) \quad n-5$

Number of Fisher Scoring iterations: 3
> coef(o)

(Intercept) age ses2 ses3 sector2
-2.29393347 0.02699100 0.04460863 0.25343316 1.24363036

> round(vcov(o),3)

\[\begin{pmatrix}
\hat{\beta}_1 & \hat{\beta}_2 & \hat{\beta}_3 & \hat{\beta}_4 & \hat{\beta}_5 \\
0.191 & -0.002 & -0.083 & -0.102 & -0.080 \\
-0.002 & 0.000 & 0.000 & 0.000 & 0.000 \\
-0.083 & 0.000 & 0.187 & 0.072 & 0.003 \\
-0.102 & 0.000 & 0.072 & 0.164 & 0.039 \\
-0.080 & 0.000 & 0.003 & 0.039 & 0.124
\end{pmatrix} \]
\[\sum_ib_5: 2l(\hat{\beta}) - 2l(\begin{bmatrix} \hat{\beta}_5 \\ b_5 \end{bmatrix}) \leq \chi^2_{1, 1-\alpha} \]

Likelihood Based Confidence Intervals

> confint(o)

Waiting for profiling to be done...

\[
\begin{array}{ccc}
2.5 \% & 97.5 \% \\
(\text{Intercept}) & -3.19560769 & -1.47574975 \\
age & 0.01024152 & 0.04445014 \\
\text{ses2} & -0.81499026 & 0.89014587 \\
\text{ses3} & -0.53951033 & 1.05825383 \\
\text{sector2} & 0.56319260 & 1.94992969 \\
\end{array}
\]

Approximate 95\% Confidence Interval for \(\beta_5 \).
Fit A Reduced Model That Excludes Socioeconomic Status (ses2, ses3).

```r
> oreduced=glm(disease~age+sector,
+ family=binomial(link=logit),
+ data=d)
>
> anova(oreduced,o,test="Chisq")
```

Analysis of Deviance Table

<table>
<thead>
<tr>
<th>Model 1: disease ~ age + sector</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 193</td>
<td>211.64</td>
<td></td>
<td>0</td>
<td>0.4193</td>
<td>0.8109</td>
</tr>
<tr>
<td>2 191</td>
<td>211.22</td>
<td>2</td>
<td>0.4193</td>
<td>0.8109</td>
<td></td>
</tr>
</tbody>
</table>

Model 1: disease ~ age + sector

Model 2: disease ~ age + ses + sector

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 n-3 193 -2\(\ell_R(\hat{\beta})\)211.64 -2 \(\log \Lambda = 2\ell_f(\hat{\beta}) - 2\ell_R(\hat{\beta})\)
2 n-5 191 -2\(\ell_f(\hat{\beta})\)211.22 2 0.4193 0.8109 = p-value

\(H_0: \beta_3 = \beta_4 = 0\)

\(H_0: \beta_{ses2} = \beta_{ses3} = 0\)

\(P(\chi^2 \geq 0.4193)\)
Switch to Reduced Model Because SES Not Significant

```r
> o = reduced
> anova(o, test = "Chisq")
```

Analysis of Deviance Table

Model: binomial, link: logit

Response: disease

Terms added sequentially (first to last)

- $2\ell_1 \left(\left[\beta_2\right]\right) - 2\ell_0 \left(\mu\right)$
- $2\ell_2 \left(\left[\beta_2\right]\right) - 2\ell_1 \left(\left[\beta_1\right]\right)$

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>195</td>
<td>236.33</td>
<td>194</td>
<td>224.32</td>
<td>0.0005283***</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>12.013</td>
<td>194</td>
<td>224.32</td>
<td>0.0005283***</td>
</tr>
<tr>
<td>sector</td>
<td>1</td>
<td>12.677</td>
<td>193</td>
<td>211.64</td>
<td>0.0003702***</td>
</tr>
</tbody>
</table>

Copyright ©2017 Dan Nettleton (Iowa State University)
```
> head(model.matrix(o))
   (Intercept)  age sector2
1        1   33     0
2        1   35     0
3        1    6     0
4        1   60     0
5        1   18     0
6        1   26     0

> b = coef(o)
> b

(Intercept)        age  sector2
-2.15965912  0.02681289  1.18169345
```
LIKELIHOOD BASED CONFIDENCE INTERVALS

> ci = confint(o)
Waiting for profiling to be done...

> ci

2.5% 97.5%
(Intercept) -2.86990940 -1.51605906
age 0.01010532 0.04421365
sector2 0.52854584 1.85407936
How should we interpret our estimate of the slope coefficient on age?

\[\exp(b[2]) \]

\[\exp(\hat{\beta_2}) \]

1.027176

All else equal, the odds of disease are about 1.027 times greater for someone age \(x+1 \) than for someone age \(x \). An increase of one year in age is associated with an increase in the odds of disease by about 2.7%.

A 95% confidence interval for the multiplicative increase factor is

\[\exp(ci[2,]) \]

2.5% 97.5%

1.010157 1.045206
> #How should we interpret our estimate of
> #the slope coefficient on sector?
> exp(b[3])

$\exp(\beta_3)$

sector2

3.25989

> #All else equal, the odds of disease are about 3.26
> #times greater for someone living in sector 2 than for
> #someone living in sector one.
> #A 95% confidence interval for the multiplicative
> #increase factor is
> exp(ci[3,])

2.5 % 97.5 %

1.696464 6.385816
> #Estimate the probability that a randomly
> #selected 40-year-old living in sector 2
> #has the disease.
> x = c(1, 40, 1)
> 1/(1 + exp(-t(x) * b))
> [,1]
> [1,] 0.5236198

> #Approximate 95% confidence interval
> #for the probability in question.
> sexb = sqrt(t(x) * vcov(o) * x)
> cixb = c(t(x) * b - 2 * sexb, t(x) * b + 2 * sexb)
> 1/(1 + exp(-cixb))
> [1] 0.3965921 0.6476635
> # Plot estimated probabilities as a function of age for each sector.

> x = 1:85

plot(x, 1/(1 + exp(-(b[1] + b[2] * x))), ylim = c(0, 1),
 type = "l", col = 4, lwd = 2, xlab = "Age",
 ylab = "Estimated Probability of Disease", cex.lab = 1.3)

lines(x, 1/(1 + exp(-(b[1] + b[2] * x + b[3]))), col = 2, lwd = 2)

legend("topleft", legend = c("Sector 1", "Sector 2"),
 col = c(4, 2), lwd = 2)