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Now suppose that instead of a Bernoulli response, we

have a binomial response for each unit in an

experiment or an observational study.

As an example, consider the trout data set discussed

on page 669 of The Statistical Sleuth, 3rd edition, by

Ramsey and Schafer.

Five doses of toxic substance were assigned to a

total of 20 fish tanks using a completely randomized

design with four tanks per dose.

For each tank, the total number of fish and the

number of fish that developed liver tumors were

recorded.
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d=read.delim("http://dnett.github.io/S510/Trout.txt")
d

dose tumor total
1 0.010 9 87
2 0.010 5 86
3 0.010 2 89
4 0.010 9 85
5 0.025 30 86
6 0.025 41 86
7 0.025 27 86
8 0.025 34 88
9 0.050 54 89
10 0.050 53 86
11 0.050 64 90
12 0.050 55 88
13 0.100 71 88
14 0.100 73 89
15 0.100 65 88
16 0.100 72 90
17 0.250 66 86
18 0.250 75 82
19 0.250 72 81
20 0.250 73 89
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One way to analyze this dataset would be to convert the
binomial counts and totals into Bernoulli responses.

For example, the first line of the data set could be converted into
9 ones and 87− 9 = 78 zeros. Each of these 87 observations
would have dose 0.01 as their explanatory variable value.

We could then use the logistic regression modeling strategy for
Bernoulli response as described before.

A simpler and equivalent way to deal with this data is to consider
a logistic regression model for the binomial counts directly.
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A Logistic Regression Model for Binomial Count Data

For all i = 1, ..., n,

yi ∼ binomial(mi, πi),

where mi is a known number of trials for observation i,

πi =
exp(x′iβ)

1 + exp(x′iβ)
,

and y1, ..., yn are independent.
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The Binomial Distribution

Recall that for yi ∼ binomial(mi, πi), the probability

mass function of yi is

P(yi = y) =

{ (mi
y

)
πy

i (1− πi)
mi−y for y ∈ {0, ...,mi}

0 otherwise
,

E(yi) = miπi, and Var(yi) = miπi(1− πi).
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The Binomial Log Likelihood

The binomial log likelihood function is

`(β | y) =
n∑

i=1

[
yi log

(
πi

1− πi

)
+ mi log(1− πi)

]
+ constant

=
n∑

i=1

[yi x′iβ − mi log(1 + exp{−x′iβ})]

+ constant.
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The function `(β | y) can be maximized over β ∈ Rp

using Fisher’s scoring method to obtain an MLE β̂.

We can compare the fit of a logistic regression model

to what is known as a saturated model.

The saturated model uses one parameter for each

observation.

In this case, the saturated model has one free

parameter πi for each yi.
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Logistic Regression Model

yi ∼ binomial(mi, πi)

y1, ..., yn independent

πi =
exp(x′iβ)

1+exp(x′iβ)

for some β ∈ Rp

p parameters

Saturated Model

yi ∼ binomial(mi, πi)

y1, ..., yn independent

πi ∈ [0, 1] for i = 1, ..., n

with no other restrictions

n parameters
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For all i = 1, . . . , n,

the MLE of πi under the logistic regression model is

π̂i =
exp(x′iβ̂)

1 + exp(x′iβ̂)
,

and the MLE of πi under the saturated model is

yi/mi.
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Then the likelihood ratio statistic for testing the logistic

regression model as the reduced model vs. the

saturated model as the full model is

2
n∑

i=1

[
yi log

(
yi/mi

π̂i

)
+ (mi − yi) log

(
1− yi/mi

1− π̂i

)]
.
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This statistic is sometimes called

the Deviance Statistic,

the Residual Deviance,

or just the the Deviance.
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A Lack-of-Fit Test

When n is suitably large and/or m1, . . . ,mn are each

suitably large, the Deviance Statistic is approximately

χ2
n−p if the logistic regression model is correct.

Thus, the Deviance Statistic can be compared to the

χ2
n−p distribution to test for lack of fit of the logistic

regression model.
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Deviance Residuals

The term

di ≡ sign(yi/mi − π̂i)

√
2
[

yi log

(
yi

miπ̂i

)
+ (mi − yi) log

(
mi − yi

mi − miπ̂i

)]

is called a deviance residual.

Note that the residual deviance statistic is the sum of

the squared deviance residuals (
∑n

i=1 d2
i ).
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Pearson’s Chi-Square Statistic

Another lack of fit statistic that is approximately χ2
n−p

under the null is Pearson’s Chi-Square Statistic:

X2 =
n∑

i=1

yi − Ê(yi)√
V̂ar(yi)


2

=
n∑

i=1

(
yi − miπ̂i√
miπ̂i(1− π̂i)

)2

.
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Pearson Residuals

The term

ri =
yi − miπ̂i√
miπ̂i(1− π̂i)

is known as a Pearson residual.

Note that the Pearson statistic is the sum of the

squared Pearson residuals (
∑n

i=1 r2
i ).
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Residual Diagnostics

For large mi values, both di and ri should be

approximately distributed as standard normal random

variables if the logistic regression model is correct.

Thus, either set of residuals can be used to diagnose

problems with model fit by, e.g., identifying outlying

observations.
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Strategy for Inference

1 Find the MLE for β using the method of Fisher

Scoring, which results in an iterative weighted

least squares approach.

2 Obtain an estimate of the inverse Fisher

information matrix that can be used for Wald type

inference concerning β and/or conduct likelihood

ratio based inference of reduced vs. full models.
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#Let's plot observed tumor proportions 
#for each tank. 
 
plot(d$dose,d$tumor/d$total,col=4,pch=19, 
      xlab="Dose", 
      ylab="Proportion of Fish with Tumor") 
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 20



 

#Let's fit a logistic regression model 
#dose is a quantitative explanatory variable. 
 
o=glm(cbind(tumor,total-tumor)~dose, 
       family=binomial(link=logit), 
       data=d) 
 
summary(o) 
 
Call: 
glm(formula = cbind(tumor, total - tumor) ~ dose, 
family = binomial(link = logit),  
    data = d) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-7.3577  -4.0473  -0.1515   2.9109   4.7729   
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Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.86705    0.07673  -11.30   <2e-16 *** 
dose        14.33377    0.93695   15.30   <2e-16 *** 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 667.20  on 19  degrees of freedom 
Residual deviance: 277.05  on 18  degrees of freedom 
AIC: 368.44 
 
Number of Fisher Scoring iterations: 5 
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#Let's plot the fitted curve. 
 
b=coef(o) 
u=seq(0,.25,by=0.001) 
xb=b[1]+u*b[2] 
pihat=1/(1+exp(-xb)) 
lines(u,pihat,col=2,lwd=1.3) 
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#Let's use a reduced versus full model 
#likelihood ratio test to test for 
#lack of fit relative to the 
#saturated model. 
 
1-pchisq(deviance(o),df.residual(o)) 
[1] 0 
 
 
#We could try adding higher-order 
#polynomial terms, but let's just 
#skip right to the model with dose 
#as a categorical variable. 
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d$dosef=gl(5,4) 
d 
    dose tumor total dosef 
1  0.010     9    87     1 
2  0.010     5    86     1 
3  0.010     2    89     1 
4  0.010     9    85     1 
5  0.025    30    86     2 
6  0.025    41    86     2 
7  0.025    27    86     2 
8  0.025    34    88     2 
9  0.050    54    89     3 
10 0.050    53    86     3 
11 0.050    64    90     3 
12 0.050    55    88     3 
13 0.100    71    88     4 
14 0.100    73    89     4 
15 0.100    65    88     4 
16 0.100    72    90     4 
17 0.250    66    86     5 
18 0.250    75    82     5 
19 0.250    72    81     5 
20 0.250    73    89     5 
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o=glm(cbind(tumor,total-tumor)~dosef, 
       family=binomial(link=logit), 
       data=d) 
 
summary(o) 
 
Call: 
glm(formula = cbind(tumor, total - tumor) ~ dosef, 
family = binomial(link = logit),  
    data = d) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.0966  -0.6564  -0.1015   1.0793   1.8513   
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Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.5557     0.2076 -12.310   <2e-16 *** 
dosef2        2.0725     0.2353   8.809   <2e-16 *** 
dosef3        3.1320     0.2354  13.306   <2e-16 *** 
dosef4        3.8900     0.2453  15.857   <2e-16 *** 
dosef5        4.2604     0.2566  16.605   <2e-16 *** 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 667.195  on 19  degrees of freedom 
Residual deviance:  25.961  on 15  degrees of freedom 
AIC: 123.36 
 
Number of Fisher Scoring iterations: 4 
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#Let's add the new fitted values to our plot. 
 
fitted(o) 
         1          2          3          4          5          6          7  
0.07204611 0.07204611 0.07204611 0.07204611 0.38150289 0.38150289 0.38150289  
         8          9         10         11         12         13         14  
0.38150289 0.64022663 0.64022663 0.64022663 0.64022663 0.79154930 0.79154930  
        15         16         17         18         19         20  
0.79154930 0.79154930 0.84615385 0.84615385 0.84615385 0.84615385  

 
points(d$dose,fitted(o),pch="_",cex=3,col=3) 
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#The fit looks good, but let's formally 
#test for lack of fit. 
 
1-pchisq(deviance(o),df.residual(o)) 
[1] 0.03843272 
 
#There is still a significant lack of fit 
#when comparing to the saturated model. 
 
#The problem is over dispersion, otherwise 
#known in this case as extra binomial variation.  
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Overdispersion

In the Generalized Linear Models framework, its often

the case that Var(yi) is a function of E(yi).

That is the case for logistic regression where

Var(yi) = miπi(1− πi) = miπi −
(miπi)

2

mi

= E(yi)− [E(yi)]
2/mi.
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Thus, when we fit a logistic regression model and

obtain estimates of the mean of the response, we get

estimates of the variance of the response as well.

If the variability of our response is greater than we

should expect based on our estimates of the mean,

we say that there is overdispersion.

Copyright c©2017 Dan Nettleton (Iowa State University) Statistics 510 33 / 46



 
 



If either the Deviance Statistic or the Pearson Chi

Square Statistic suggests a lack of fit that cannot be

explained by other reasons (e.g., poor model for the

mean or a few extreme outliers), overdispersion may

be the problem.
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Quasi-Likelihood Inference

If there is overdispersion, a quasi-likelihood approach

may be used.

In the binomial case, we make all the same

assumptions as before except that we assume

Var(yi) = φ mi πi(1− πi)

for some unknown dispersion parameter φ > 1.
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The dispersion parameter φ can be estimated by

φ̂ =

∑n
i=1 d2

i

n− p

or

φ̂ =

n∑
i=1

r2
i

n− p
.
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All analyses are as before except that

1 The estimated variance of β̂ is multiplied by φ̂.

2 For Wald type inferences, the standard normal null

distribution is replaced by t with n− p degrees of

freedom.

3 Any test statistic T that was assumed χ2
q under H0

is replaced with T/(qφ̂) and compared to an F

distribution with q and n− p degrees of freedom.
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These changes to the inference strategy in the

presence of overdispersion are analogous to the

changes that would take place in normal theory

Gauss-Markov linear model analysis if we switched

from assuming σ2 were known to be 1 to assuming σ2

were unknown and estimating it with MSE.

(Here φ is like σ2 and φ̂ is like MSE.)
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Whether there is overdispersion or not, all the usual

ways of conducting generalized linear models

inference are approximate except for the special case

of normal theory linear models.
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#Let's estimate the dispersion parameter. 
 
phihat=deviance(o)/df.residual(o) 
phihat 
[1] 1.730745 
 
#We can obtain the same estimate by using 
#the deviance residuals. 
 
di=residuals(o,type="deviance") 
sum(di^2)/df.residual(o) 
[1] 1.730745 
 
#We can obtain an alternative estimate by 
#using the Pearson residuals. 
 
ri=residuals(o,type="pearson") 
phihat=sum(ri^2)/df.residual(o) 
phihat 
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[1] 1.671226 
 
 
#Now we will conduct a quasilikelihood analysis 
#that accounts for overdispersion. 
 
oq=glm(cbind(tumor,total-tumor)~dosef, 
       family=quasibinomial(link=logit), 
       data=d) 
 
summary(oq) 
 
Call: 
glm(formula = cbind(tumor, total - tumor) ~ dosef, 
family = quasibinomial(link = logit),  
    data = d) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.0966  -0.6564  -0.1015   1.0793   1.8513   
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Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -2.5557     0.2684  -9.522 9.48e-08 *** 
dosef2        2.0725     0.3042   6.814 5.85e-06 *** 
dosef3        3.1320     0.3043  10.293 3.41e-08 *** 
dosef4        3.8900     0.3171  12.266 3.20e-09 *** 
dosef5        4.2604     0.3317  12.844 1.70e-09 *** 
 
(Dispersion parameter for quasibinomial family taken 
to be 1.671232) 
 
    Null deviance: 667.195  on 19  degrees of freedom 
Residual deviance:  25.961  on 15  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 4 
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#Test for the effect of dose on the response. 
 
drop1(oq,test="F") 
Single term deletions 
 
Model: 
cbind(tumor, total - tumor) ~ dosef 
       Df Deviance F value     Pr(F)     
<none>       25.96                       
dosef   4   667.20  92.624 2.187e-10 *** 
 
#The F value is computed as 
#[(667.20-25.96)/(19-15)]/(25.96/15) 
#This computation is analogous to  
#[(SSEr-SSEf)/(DFr-DFf)]/(SSEf/DFf) 
#where deviance is like SSE. 
 
#There is strong evidence that 
#the probability of tumor formation 
#is different for different doses 
#of the toxicant. 
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#Let's test for a difference between 
#the top two doses. 
 
b=coef(oq) 
b 
(Intercept)      dosef2      dosef3      dosef4      dosef5  
  -2.555676    2.072502    3.132024    3.889965    4.260424  
 
v=vcov(oq) 
v 
            (Intercept)      dosef2      dosef3     dosef4     dosef5 
(Intercept)   0.0720386 -0.07203860 -0.07203860 -0.0720386 -0.0720386 
dosef2       -0.0720386  0.09250893  0.07203860  0.0720386  0.0720386 
dosef3       -0.0720386  0.07203860  0.09259273  0.0720386  0.0720386 
dosef4       -0.0720386  0.07203860  0.07203860  0.1005702  0.0720386 
dosef5       -0.0720386  0.07203860  0.07203860  0.0720386  0.1100211 
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se=sqrt(t(c(0,0,0,-1,1))%*%v%*%c(0,0,0,-1,1)) 
 
tstat=(b[5]-b[4])/se 
 
pval=2*(1-pt(abs(tstat),df.residual(oq))) 
 
pval 
0.1714103 
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