
A Generalized Linear Model

for Poisson Response Data

Copyright c©2015 Dan Nettleton (Iowa State University) Statistics 510 1 / 69



An Example Experiment

Consider an experiment designed to evaluate the effectiveness
of an anti-fungal chemical on plants.

A total of 60 plant leaves were randomly assigned to treatment
with 0, 5, 10, 15, 20, or 25 units of the anti-fungal chemical, with
10 plant leaves for each amount of anti-fungal chemical.

All leaves were infected with a fungus.

Following a two-week period, the leaves were studied under a
microscope, and the number of infected cells was counted and
recorded for each leaf.
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Questions of Interest

Is there a significant association between the amount of
anti-fungal chemical and the number of infected cells per plant
leaf?

Can we estimate the mean number of infected cells per leaf as a
function of the amount of anti-fungal chemical?

What amount of chemical should be applied to leaves so that the
mean number of infected cells is approximately 5 per leaf?
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A Generalized Linear Model for Poisson Count Data

For all i = 1, ..., n,

yi ∼ Poisson(λi),

log(λi) = x′iβ,

and y1, ..., yn are independent.
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The Poisson Distribution

Recall that for yi ∼ Poisson(λi), the probability mass

function of yi is

P(yi = y) =

{
λy

i exp(−λi)
y! for y ∈ {0, 1, 2, ...}

0 otherwise
,

E(yi) = λi, and Var(yi) = λi.
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The Poisson Log Likelihood for the Generalized LM

The Poisson log likelihood function is

`(β | y) =
n∑

i=1

[yi log(λi)− λi − log(yi!)]

=
n∑

i=1

[yi x′iβ − exp(x′iβ)− log(yi!)].
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Inference for the Poisson Generalized LM

The function `(β | y) can be maximized over β ∈ Rp

using Fisher’s scoring method to obtain an MLE β̂.

An estimate of the inverse Fisher information matrix

can be used for Wald inference concerning β.

Alternatively, we can conduct likelihood ratio based

inference of reduced vs. full models.
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Interpretation of Parameters

Let x = [x1, x2, . . . , xj−1, xj , xj+1, . . . , xp]
′.

Let x̃ = [x1, x2, . . . , xj−1, xj + 1, xj+1, . . . , xp]
′.

In other words, x̃ is the same as x except that the jth

explanatory variable has been increased by one unit.

Let λ = exp(x′β) and λ̃ = exp(x̃′β).
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Ratio of Means

λ̃/λ = exp(x̃′β)/ exp(x′β)

= exp(x̃′β − x′β}

= exp{(xj + 1)βj − xjβj}

= exp(βj).
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Thus, λ̃ = exp(βj)λ.

All other explanatory variables held constant, the

mean response at xj + 1 is exp(βj) times the mean

response at xj.

This is true regardless of the initial value xj.
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A one unit increase in the jth explanatory variable

(with all other explanatory variables held constant) is

associated with a multiplicative change in the mean

response by the factor exp(βj).
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If (Lj,Uj) is a 100(1− α)% confidence interval for βj,

then

(exp(Lj), exp(Uj))

is a 100(1− α)% confidence interval for exp(βj).
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Also, note that if (L,U) is a 100(1− α)% confidence

interval for x′β, then a 100(1− α)% confidence

interval for λ = exp(x′β) is

(exp(L), exp(U)) .
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A Generalized LM for the Anti-Fungal Experiment

For i = 1, ..., 60, let yi denote the number of infected

cells for leaf i. Suppose y1, . . . , y60 are independent,

yi ∼ Poisson(λi), and

log(λi) = β0 + β1xi,

where xi denotes the amount of anti-fungal chemical

applied to leaf i.
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> o=glm(y˜x,family=poisson(link = "log"))

> summary(o)

Call:

glm(formula = y ˜ x, family = poisson(link = "log"))

Deviance Residuals:

Min 1Q Median 3Q Max

-7.8363 -1.6715 -0.3411 1.2467 12.3127
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.373003 0.032434 134.83 <2e-16 ***

x -0.162011 0.004933 -32.84 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Copyright c©2015 Dan Nettleton (Iowa State University) Statistics 510 17 / 69



Null deviance: 2314.87 on 59 degrees of freedom

Residual deviance: 614.65 on 58 degrees of freedom

AIC: 849.53

Number of Fisher Scoring iterations: 5
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> #MLE of beta vector

> b=coef(o)

> b

(Intercept) x

4.3730032 -0.1620111
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> #Estimated variance of the MLE

> v=vcov(o)

> v

(Intercept) x

(Intercept) 1.051970e-03 -9.179444e-05

x -9.179444e-05 2.433540e-05
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Answering the First Question of Interest

Is there a significant association between the amount of
anti-fungal chemical and the number of infected cells per plant
leaf?

The null hypothesis of no association between the amount of
anti-fungal chemical and the number of infected cells per plant
leaf is H0 : β1 = 0 for our Generalized LM.

We can test this null hypothesis using either a Wald test or a
LRT as follows.
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Wald Test of H0 : β1 = 0

> #Test Statistic

> z=b[2]/sqrt(v[2,2])

> z

x

-32.84169

> #p-value

> 2*pnorm(z)

x

1.496932e-236

Copyright c©2015 Dan Nettleton (Iowa State University) Statistics 510 22 / 69



Likelihood Ratio Test of H0 : β1 = 0

> anova(o,test="Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 59 2314.87

x 1 1700.2 58 614.65 < 2.2e-16 ***
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Answering the Second Question of Interest

Can we estimate the mean number of infected cells per leaf as a
function of the amount of anti-fungal chemical?

According to our Poisson Generalized LM, the mean number of
infected cells for a leaf treated with x units of the anti-fungal
chemical is

exp(β0 + β1x), which is estimated by exp(β̂0 + β̂1x).
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We can add the estimated mean function to our
scatterplot with the following code:

xgrid=seq(0,25,by=.1)

lines(xgrid,exp(b[1]+b[2]*xgrid),col=2,lwd=1.5)
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Example Confidence Interval for a Mean
An approximate 95% Wald confidence interval for the mean
number of infected cells when 15 units of the chemical are
applied is (6.17, 7.89).

> cc=c(1,15)

> se=sqrt(t(cc)%*%v%*%cc)

> exp(t(cc)%*%b-2*se)

[,1]

[1,] 6.171721

> exp(t(cc)%*%b+2*se)

[,1]

[1,] 7.89079
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The Effect of a One Unit Increase in Chemical

> exp(b[2])

x

0.8504318

An increase by one unit in the amount of anti-fungal

chemical applied to a leaf is associated with a

decrease of approximately 15% in the mean number

of infected cells.
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Confidence Interval for the Multiplicative Factor

> c(exp(b[2]-2*sqrt(v[2,2])),exp(b[2]+2*sqrt(v[2,2])))

x x

0.8420825 0.8588638

An approximated 95% confidence interval for the mean

associated with x + 1 units of chemical divided by the mean

associated with x units of the chemical (λ̃/λ) is (0.842, 0.859).
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Answering the Third Question of Interest

What amount of chemical should be applied to leaves so that the
mean number of infected cells is approximately 5 per leaf?

λ = 5 ⇐⇒ log(λ) = log(5)

⇐⇒ x′β = log(5)

⇐⇒ β0 + β1x = log(5)

⇐⇒ x = (log(5)− β0)/β1

Thus, we seek an estimate of the nonlinear function of β given
by

h(β) = (log(5)− β0)/β1.
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Answering the Third Question of Interest

By the invariance property, the MLE of h(β) is

ĥ(β) = h(β̂) = (log(5)− β̂0)/β̂1.

By the Delta Method, ĥ(β) is approximately normal with mean
h(β) and variance

V̂ar(ĥ(β)) = D̂′V̂ar(β̂)D̂,

where

D̂′ =

[
∂h(β)
∂β0

∣∣∣∣
β=β̂

,
∂h(β)
∂β1

∣∣∣∣
β=β̂

]
.
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Answering the Third Question of Interest

D̂′ =

[
∂h(β)
∂β0

∣∣∣∣
β=β̂

,
∂h(β)
∂β1

∣∣∣∣
β=β̂

]

=

[
−1

β̂1
,
β̂0 − log(5)

β̂2
1

]
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> h=(log(5)-b[1])/b[2]

> h

(Intercept)

17.05788

>

> Dhat=c(-1/b[2],(b[1]-log(5))/b[2]ˆ2)

>

> seh=sqrt(t(Dhat)%*%v%*%Dhat)

>

> ci=c(h-2*seh,h+2*seh)

> ci

[1] 16.18486 17.93090
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Answering the Third Question of Interest

The estimated amount of chemical that should be

applied to leaves so that the mean number of infected

cells is approximately 5 per leaf is 17.1 units.

An approximate 95% confidence interval for the

required amount of chemical is 16.2 to 17.9 units.
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plot(x,y,xlab="Level of Anti-Fungal Treatment",

ylab="Number of Infected Cells",col=4,cex.lab=1.5,

xlim=c(14,21),ylim=c(0,18))

xgrid=seq(0,25,by=.1)

lines(xgrid,exp(b[1]+b[2]*xgrid),col=2,lwd=1.5)

abline(h=5,lty=2)

lines(c(h,h),c(-1,5),lwd=1.5)

lines(c(ci[1],ci[1]),c(-1,5),lwd=1.5,col="purple")

lines(c(ci[2],ci[2]),c(-1,5),lwd=1.5,col="purple")
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Checking for Lack of Fit

We can compare the fit of a Poisson Generalized LM

to the fit of a saturated model.

The saturated model uses one parameter for each

observation.

In this case, the saturated model has one free

parameter λi for each yi.
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Poisson Generalized LM

yi ∼ Poisson(λi)

y1, ..., yn independent

λi = exp(x′iβ)

for some β ∈ Rp

p parameters

Saturated Model

yi ∼ Poisson(λi)

y1, ..., yn independent

λi ∈ [0,∞) for i = 1, ..., n

with no other restrictions

n parameters
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For all i = 1, . . . , n,

the MLE of λi under the Poisson Generalized LM is

λ̂i = exp(x′iβ̂),

and the MLE of λi under the saturated model is

simply yi.
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Then the likelihood ratio statistic for testing the

Poisson Generalized LM as the reduced model vs.

the saturated model as the full model is

2
n∑

i=1

[
yi log

(
yi

λ̂i

)
− (yi − λ̂i)

]
.

This is the Deviance Statistic for the Poisson case.
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A Lack-of-Fit Test

When the Poisson means λ1, . . . , λn are suitably large, the
Deviance Statistic is approximately χ2

n−p if the Poisson
Generalized LM is correct.

Thus, the Deviance Statistic can be compared to the χ2
n−p

distribution to test for lack of fit of the logistic regression model.

As indicated in Chapter 22 of The Statistical Sleuth, the χ2
n−p

approximation may not be very reliable if a substantial proportion
of the λ̂i values are less than 5.
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Deviance Residuals

In the Poisson case, the deviance residuals are given

by

di ≡ sign(yi − λ̂i)

√
2
[

yi log
(

yi

λ̂i

)
− (yi − λ̂i)

]
.

The Deviance Statistic is the sum of the squared

deviance residuals (
∑n

i=1 d2
i ).

Copyright c©2015 Dan Nettleton (Iowa State University) Statistics 510 42 / 69



Pearson’s Chi-Square Statistic

Another lack of fit statistic that is approximately χ2
n−p

under the null is Pearson’s Chi-Square Statistic:

X2 =
n∑

i=1

yi − Ê(yi)√
V̂ar(yi)


2

=
n∑

i=1

yi − λ̂i√
λ̂i


2

.
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Pearson Residuals

The term

ri =
yi − λ̂i√

λ̂i

is a Pearson residual for a Poisson Generalized LM.

The Pearson statistic is the sum of the squared

Pearson residuals (
∑n

i=1 r2
i ).
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Residual Diagnostics

For large λi, both di and ri should be approximately

distributed as standard normal random variables if the

Poisson Generalized LM is correct.

Thus, either set of residuals can be used to diagnose

problems with model fit by, e.g., identifying outlying

observations.
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R Code to Generate a Deviance Residual Plot

d=resid(o,type="deviance")

plot(fitted(o),d,

xlab="Estimated Mean",

ylab="Deviance Residual",

cex.lab=1.4,

pch=16,col=4)

abline(h=0,lty=2)

Copyright c©2015 Dan Nettleton (Iowa State University) Statistics 510 46 / 69



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

0 20 40 60 80

−
5

0
5

10

Estimated Mean

D
ev

ia
nc

e 
R

es
id

ua
l

Copyright c©2015 Dan Nettleton (Iowa State University) Statistics 510 47 / 69



R Code to Generate a Pearson Residual Plot

r=resid(o,type="pearson")

plot(fitted(o),r,

xlab="Estimated Mean",

ylab="Pearson Residual",

cex.lab=1.4,

pch=16,col=4)

abline(h=0,lty=2)
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Overdispersion

In the Generalized Linear Models framework, its often

the case that Var(y) is a function of E(y).

For the Poisson case,

Var(y) = E(y) = λ.
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Thus, when we fit a Poisson Generalized LM and

obtain estimates of the mean of the response, we get

estimates of the variance of the response as well.

If the variability of our response is greater than we

should expect based on our estimates of the mean,

we say that there is overdispersion.
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If either the Deviance Statistic or the Pearson

Chi-Square Statistic suggests a lack of fit that cannot

be explained by other reasons (e.g., poor model for

the mean or a few extreme outliers), overdispersion

may be the problem.
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Evidence for Overdispersion

> deviance(o)

[1] 614.6479

> sum(dˆ2)

[1] 614.6479

> sum(rˆ2)

[1] 639.797

> 1-pchisq(deviance(o),60-2)

[1] 0

> 1-pchisq(sum(rˆ2),60-2)

[1] 0
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Quasi-Likelihood (QL) Inference

If there is overdispersion, a quasi-likelihood approach

may be used.

In the Poisson case, we make all the same

assumptions as before except that we assume

Var(yi) = φλi

for some unknown dispersion parameter φ > 1.
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The dispersion parameter φ can be estimated by

φ̂ =

∑n
i=1 d2

i

n− p

or

φ̂ =

n∑
i=1

r2
i

n− p
.
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All analyses are as before except that

1 The estimated variance of β̂ is multiplied by φ̂.

2 For Wald type inferences, the standard normal null

distribution is replaced by t with n− p degrees of

freedom.

3 Any test statistic T that was assumed χ2
q under H0

is replaced with T/(qφ̂) and compared to an F

distribution with q and n− p degrees of freedom.
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These changes to the inference strategy in the

presence of overdispersion are analogous to the

changes that would take place in normal theory

Gauss-Markov linear model analysis if we switched

from assuming σ2 were known to be 1 to assuming σ2

were unknown and estimating it with MSE.

(Here φ is like σ2 and φ̂ is like MSE.)
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Whether there is overdispersion or not, all the usual

ways of conducting generalized linear models

inference are approximate except for the special case

of normal theory linear models.
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QL Analysis of the Fungal Infection Data

> #Estimates of the dispersion parameter

>

> deviance(o)/df.residual(o)

[1] 10.59738

>

> sum(rˆ2)/df.residual(o)

[1] 11.03098
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> oq=glm(y˜x,family=quasipoisson(link = "log"))

> summary(oq)

Call:

glm(formula = y ˜ x, family = quasipoisson(link = "log"))

Deviance Residuals:

Min 1Q Median 3Q Max

-7.8363 -1.6715 -0.3411 1.2467 12.3127
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.37300 0.10772 40.595 < 2e-16 ***

x -0.16201 0.01638 -9.888 4.7e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family

taken to be 11.03098)
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Null deviance: 2314.87 on 59 degrees of freedom

Residual deviance: 614.65 on 58 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5
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> #MLE of beta vector

> b=coef(oq)

> b

(Intercept) x

4.3730032 -0.1620111

>

> #Estimated variance of the MLE

> v=vcov(oq)

> v

(Intercept) x

(Intercept) 0.011604262 -0.0010125829

x -0.001012583 0.0002684434
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> #Test Statistic

> tstat=b[2]/sqrt(v[2,2])

> tstat

x

-9.888225

>

> #p-value

> 2*pt(tstat,60-2)

x

4.700095e-14
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> #Likelihood Ratio Test

> anova(oq,test="F")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 59 2314.87

x 1 1700.2 58 614.65 154.13 < 2.2e-16 ***
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Exponential Dispersion Families

The normal, Bernoulli, binomial, and Poisson families of
distributions can each be characterized as an exponential
dispersion family of distributions with a probability density
function or probability mass function of the form

exp
{

yθ − b(θ)
a(φ)

+ c(y, φ)
}
,

where a(·), b(·), and c(·) are specific functions, θ is an unknown
parameter that is a function of the mean, and φ is a dispersion
parameter that may or may not be known.
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Exponential Dispersion Families

The gamma and inverse Gaussian families of distributions are
other example distributions sometimes useful for modeling data
that can be characterized as exponential dispersion families.

Generalized Linear Models for gamma and inverse Gaussian
distributions will be discussed in STAT520 – along with more
details about normal, Bernoulli, binomial, and Poisson
Generalized Linear Models.
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