
1

The Beginning of an
Introduction to R
for New Users

© 2010 Dan Nettleton

2

Preliminaries

• Throughout these slides, red text indicates text that is
typed at the R prompt or text that is to be cut from a text
file and pasted to the R prompt.

• Blue text indicates R output.

• Black text indicated notes about the code and output.

• To read the help file for any R command type ?command
at the R prompt. For example, to read about the mean
function

 > ?mean

3

> 7
[1] 7

> rnorm(20,0,1)
 [1] 0.7471442 -0.1930792 -1.4760422 -0.3172517 -0.3997149
 [6] -0.6693018 0.4165647 0.8298968 1.0748766 1.3025841
[11] 0.4675156 -0.5274312 0.2418231 0.9012613 0.6674558
[16] -0.2037051 1.0914826 -1.5400979 -1.3983107 -1.0940496

> 6+4/2
[1] 8

> (6+4)/2
[1] 5

> (6+4)/
+ 2
[1] 5

If you give R 7, it will give you back 7.
The 1 in square brackets marks the element number
in the output. For example, the next command generates
20 standard normal random numbers. The [6] indicates
that -0.6693018 is the 6th number of the 20.

R is a calculator that uses standard order of operations.

If you press the enter key before completing a command,
the R prompt becomes a +, which indicates that anything
typed after the + will be appended to the line above
for evaluation.

4

> x=c(4,-1,5,9,4.5)
> x
[1] 4.0 -1.0 5.0 9.0 4.5

> x+1
[1] 5.0 0.0 6.0 10.0 5.5
> x
[1] 4.0 -1.0 5.0 9.0 4.5

> x[2]
[1] -1

> x[-2]
[1] 4.0 5.0 9.0 4.5

> x[c(1,5)]
[1] 4.0 4.5

This command combines the numbers into
a vector and assigns the vector to an object
called x. The vector is printed to the screen
when x is typed at the R prompt.

This command creates (but does not store) a
new vector whose elements are the elements
x with 1 added to each. Note that the command
does not change x.

The number 2 enclosed in brackets immediately
after x asks R to produce the 2nd element of the
vector x.

The number -2 enclosed in brackets immediately
after x asks R to produce all the elements of the
vector x except the 2nd element.

This command requests the 1st and 5th
elements of the vector x.

5

> x
[1] 4.0 -1.0 5.0 9.0 4.5

> 1:3
[1] 1 2 3

> x[1:3]
[1] 4 -1 5

> x>0
[1] TRUE FALSE TRUE TRUE TRUE

> x[x>0]
[1] 4.0 5.0 9.0 4.5

> !(x>0)
[1] FALSE TRUE FALSE FALSE FALSE
> x<=0
[1] FALSE TRUE FALSE FALSE FALSE

The vector x was not changed by the
previous commands.

This command creates a vector of consecutive
integers ranging from the integer before the
colon through the integer after the colon.

This command requests the 1st, 2nd, and 3rd
elements of the vector x.

This command creates a vector
of logicals (TRUE or FALSE) by
evaluating whether each element
of x is greater than 0 or not.

This command requests the positive elements of x.

The exclamation point (!) means
“not” or “the opposite of”.

“<=” means “less than or equal”.
To check for equality, use “==”.

6

> x
[1] 4.0 -1.0 5.0 9.0 4.5
> y=sample(1:5)
> y
[1] 2 1 4 3 5

> y[x<0]=0
> y
[1] 2 0 4 3 5

> y[y==0]=99
> y
[1] 2 99 4 3 5

> y[y<99]=-1
> y
[1] -1 99 -1 -1 -1

> y[y<0]=1:4
> y
[1] 1 99 2 3 4

The sample function can be used to shuffle a vector
into a random order.

This command finds the elements of y that correspond to elements
of x that are less than 0, and then replaces all those elements of y
with 0. In this case, only the 2nd element of x is less than 0, so only
the 2nd element of y gets replaced with 0.

This command finds the elements of y that are exactly equal to 0
and then replaces all those elements of y with 99.

This command finds the elements of y that are less than 99
and replaces them all with -1.

This command finds the elements of y that are less than 0
and replaces the first such element with 1, the second with 2,
the third with 3, and the fourth with 4.

The vector x was not changed by the previous commands.

7

> x
[1] 4.0 -1.0 5.0 9.0 4.5

> sum(x)
[1] 21.5

> prod(x)
[1] -810

> x<=0
[1] FALSE TRUE FALSE FALSE FALSE
> sum(x<=0)
[1] 1

> x*(1:5)
[1] 4.0 -2.0 15.0 36.0 22.5

> x*(x<=0)
[1] 0 -1 0 0 0

The vector x was not changed by the
previous commands.

sum is a built-in R function that returns the
sum of all the elements in a vector.

prod is a built-in R function that returns the
product of all the elements in a vector.

When R is asked to perform mathematical operations on logicals,
TRUE gets converted to 1 and FALSE to 0. Thus, this command
counts the number of elements of x that are less than or equal to 0.

Vectors are multiplied component by component.
Thus, the elements of the resulting vector are
4*1, -1*2, 5*3, 9*4, and 4.5*5.

Another example of componentwise multiplication.
Here, the TRUEs and FALSEs become 1s and 0s,
respectively.

8

dan=function(x1,x2)
{
 out=sum(x1>x2)
 out
}

> dan(1:4,c(2,1,8,7))
[1] 1

dan=function(x1=1:4,x2)
{
 out=sum(x1>x2)
 out
}

> dan(x2=c(2,1,8,7))
[1] 1

dan(9:12,c(2,1,8,7))
[1] 4

This is an example of a function. Functions can be written
in a text editor and pasted into R. This function has two
arguments called x1 and x2. The function counts how
many of the elements in x1 are greater than their
corresponding elements in x2. The result is stored in out
and provided when the function is called at the R prompt.

In this case, x1 gets assigned 1,2,3,4 and x2 gets assigned
2,1,8,7 when the function is called.

You can specify a default value for any argument.
In this case, x1 is given the default value of 1,2,3,4.
If x1 is not assigned any value when the function is
called, the default value will be used.

R assumes the arguments are supplied in order when the
function is called, but the arguments can be given in any
order provided that the argument name is specified in the
call. For example, here x2 gets assigned 2,1,8,7 and x1
will have the default value 1,2,3,4.

If something is supplied for x1, it overrides the default.

9

> x
[1] 4.0 -1.0 5.0 9.0 4.5

> sort(x)
[1] -1.0 4.0 4.5 5.0 9.0

> rev(sort(x))
[1] 9.0 5.0 4.5 4.0 -1.0

> order(x)
[1] 2 1 5 3 4

> rank(x)
[1] 2 1 4 5 3

> x
[1] 4.0 -1.0 5.0 9.0 4.5
> x=sort(x)
> x
[1] -1.0 4.0 4.5 5.0 9.0

sort creates a new vector whose values are those
of x sorted from smallest to largest.

rev creates a new vector whose values are the same as
those of its argument except that the order is reversed.

The order function lists the element numbers (indices) for the
smallest, second smallest,..., largest value in x. For example,
2 appears first because the smallest value in x (-1.0) is the second
element (see x at the top of the slide). A 4 appears last because
the largest value (9.0) is the fourth element.

The rank function creates a new vector whose values are the ranks
of the values of x among all elements in x.

None of the previous commands changed x.
This command replaces x with the sorted vector
so that the elements of x are now in increasing
order.

10

> m=matrix(1:9,nrow=3)
> m
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> t(m)
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

> m=matrix(1:9,nrow=3,byrow=T)
> m
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

This command creates a matrix with three rows.
The values in the matrix are determined by the
first argument. In this case, the values will be
1,2,...,9. By default, the matrix is filled down the
columns.

t is the transpose function. It creates a new matrix
by exchanging the rows and columns of a given
matrix. For example, row 1 of t(m) is column 1 of m.

If the byrow argument is set to T
(short for TRUE), the matrix will be
filled across rows rather than down
columns. There is also an ncol
argument that can be used to set
the number of columns. In the example
to the left, the number of columns are
determined by the number of rows and the 9
elements in the vector 1:9.

11

> m
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

> m[2,2]
[1] 5

> m[2,]
[1] 4 5 6

> m[,2]
[1] 2 5 8

> m[1:2,c(1,3)]
 [,1] [,2]
[1,] 1 3
[2,] 4 6

Find the value in the second row and second column of the matrix m.

Find the second row of the matrix m.

Find the second column of the matrix m.

Find the submatrix consisting of the first two rows and
and first and third columns of m.

12

> m
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

> m=m-5
> m
 [,1] [,2] [,3]
[1,] -4 -3 -2
[2,] -1 0 1
[3,] 2 3 4

> abs(m)
 [,1] [,2] [,3]
[1,] 4 3 2
[2,] 1 0 1
[3,] 2 3 4

Subtracting 5 from a matrix subtracts 5 from each element.
There is a similar behavior for other mathematical
operations.

Using the absolute value function on the matrix m
creates a new matrix whose values are the absolute
values of those in m.

The matrix m was not changed by the previous commands.

13

> m
 [,1] [,2] [,3]
[1,] -4 -3 -2
[2,] -1 0 1
[3,] 2 3 4

> sum(m)
[1] 0

> apply(m,1,sum)
[1] -9 0 9

> apply(m,2,median)
[1] -1 0 1

> sweep(m,1,c(2,9,4),"*")
 [,1] [,2] [,3]
[1,] -8 -6 -4
[2,] -9 0 9
[3,] 8 12 16

Add up all the elements of the matrix m.

Separately for each row of m, sum the values.

Separately for each column of m, find the median
of the values.

(1 means rows and 2 means columns.)

This command creates a new matrix whose
1st row is the 1st row of m multiplied by 2,
whose 2nd row is the 2nd row of m multiplied by 9,
and whose 3rd row is the 3rd row of m multiplied by 4.

The matrix m was not changed by the previous command.

14

> m
 [,1] [,2] [,3]
[1,] -4 -3 -2
[2,] -1 0 1
[3,] 2 3 4

> sweep(m,2,c(2,9,4),"-")
 [,1] [,2] [,3]
[1,] -6 -12 -6
[2,] -3 -9 -3
[3,] 0 -6 0

> sweep(m,2,c(2,9,4))
 [,1] [,2] [,3]
[1,] -6 -12 -6
[2,] -3 -9 -3
[3,] 0 -6 0

This command creates a new matrix whose
1st column is the 1st column of m minus 2,
whose 2nd column is the 2nd column of m minus 9,
and whose 3rd column is the 3rd column of m minus 4.

Subtraction is the default operation, so this
command produces the same result as the
command above. Several other operators
can be specified between quotation marks.

The matrix m was not changed by the previous commands.

15

> m=matrix(sample(1:9),nrow=3)
> m
 [,1] [,2] [,3]
[1,] 8 4 1
[2,] 5 6 3
[3,] 9 2 7

> sweep(m,2,apply(m,2,median))
 [,1] [,2] [,3]
[1,] 0 0 -2
[2,] -3 2 0
[3,] 1 -2 4

> m[order(m[,1]),]
 [,1] [,2] [,3]
[1,] 5 6 3
[2,] 8 4 1
[3,] 9 2 7

This command creates a new matrix
whose elements are a random
shuffling of the integers 1,2,...,9.

This command combines sweep and
apply to subtract the column median
from the values in each column.

This command creates a new matrix whose rows
are the rows of m ordered according to the order of
the first column of m.

16

> x=c(3,3,9,6,12,15,18,12)

> c(9,4,3,8)%in%x
[1] TRUE FALSE TRUE FALSE

> table(x)
x
 3 6 9 12 15 18
 2 1 1 2 1 1

> unique(x)
[1] 3 9 6 12 15 18

> max(x)
[1] 18

> which.max(x)
[1] 7

> which(x<7)
[1] 1 2 4

A vector is created that is TRUE for each
element in the first vector that is contained
in the second vector, and FALSE for each
element in the first vector that is not in the
second vector.

The number of times that each value appears
in x is reported in a table. For example, 3
appears 2 times in x, 6 appears 1 time, 9
appears 1 time, 12 appears 2 times, etc.

A new vector is created that has only one value for
each different value in x. For example, although
x has two 3’s, unique(x) has only one 3.

The largest value of x is returned.

The element number (index) of the largest value of x
is returned.

The indices of the values of x that are less than 7 are
returned.

	The Beginning of an Introduction to R�for New Users
	Preliminaries
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

