
STAT 510 Homework 10 Solutions Spring 2020

1. (a) Follow the steps of slide 8 of set 20:

1) Find n−rank(X) = 3−1 = 2 linearly independent vectorsA = [a1,a2] such that a′iX =

0′. From the model we have X =

1
1
1

, so one of the choices can be A =

 1 1
−1 0
0 −1

 .

2) Find the MLE of σ2 using w ≡ A′y =

[
y1 − y2

y1 − y3

]
as data.

w = A′y = A′(Xβ + ε) = A′Xβ +A′ε = 0 +A′ε = A′ε

Thus w ∼ N(0,A′ΣA) where

A′ΣA =

[
1 −1 0
1 0 −1

] σ2 0 0
0 σ2 0
0 0 σ2

 1 1
−1 0
0 −1


= σ2

[
2 1
1 2

]
And we have

det(A′ΣA) = 3σ4

w′(A′ΣA)−1w =
2

3σ2
[(y1 − y2)2 − (y1 − y2)(y1 − y3) + (y1 − y3)2] ≡ 2

3σ2
4

So w ∼ N(0, σ2

[
2 1
1 2

]
) and the log likelihood function is

l(σ2|w) = −1

2
log(det(A′ΣA))− 1

2
w′(A′ΣA)−1w − 1

2
log(2π)

The score equation is

∂l

∂σ2
= − 1

σ2
+

4
3σ4

= 0 =⇒ σ̂2 =
4
3

Therefore the REML estimator of σ2 in this case is 4
3

= 1
3
[(y1 − y2)2 − (y1 − y2)(y1 −

y3) + (y1 − y3)2].

(b) Follow the steps of slide 8 of set 20:

1) Find n − rank(X) = 4 − 2 = 2 linearly independent vectors A = [a1,a2] such that

a′iX = 0′. From the model we have X =


1 0
1 0
0 1
0 1

, so one of the choices can be

A =


1 0
−1 0
0 1
0 −1

 .
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2) Find the MLE of σ2 using w ≡ A′y =

[
y1 − y2

y3 − y4

]
as data.

w = A′y = A′(Xβ + ε) = A′Xβ +A′ε = 0 +A′ε = A′ε

Thus w ∼ N(0,A′ΣA) where

A′ΣA =

[
1 −1 0 0
0 0 1 −1

]
σ2 σ2/2 0 0
σ2/2 σ2 0 0

0 0 σ2 σ2/2
0 0 σ2/2 σ2




1 0
−1 0
0 1
0 −1


= σ2

[
1 0
0 1

]
So w ∼ N(0, σ2I) and we can use the Gauss-Markov linear model result directly to find
the MLE.

σ̂2 =
w′(I − P )w

2
where P = 0 is the projection matrix for design matrix 0

=
w′w

2

Therefore the REML estimator of σ2 in this case is w′w
2

= 1
2
[(y1 − y2)2 + (y3 − y4)2].

2. (a) If we use the parametrization β = (µ1, · · · , µ100)′ where µi = µ + gi, i = 1, ..., 100, the
model matrix is

X =



1
n1×1

1
n2×1

. . .

1
n99×1

1
n100×1



X ′X =


n1

n2

. . .

n99

n100

 and (X ′X)−1 =


1
n1

1
n2

. . .
1
n99

1
n100


Thus, β̂ = (X ′X)−1X ′y = (ȳ1·, ..., ȳ100·)

′ and µ̂i = µ̂+ gi = ȳi· for i = 1, ..., 100. The R
code below fits the cell means model to these data and provides estimates of µi = µ+ gi
using the parameterization β = (µ1, · · · , µ100)′:

> dat=read.table("https://dnett.github.io/S510/hw10GenotypeYield.txt",

+ header = T, col.names=c("genotype","yield"),

+ colClasses = c("factor","numeric"))

> dat$genotype=factor(dat$genotype, levels = 1:100)

> ols.f=lm(yield~0+genotype,data=dat)
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> ols.f

Call:

lm(formula = yield ~ 0 + genotype, data = dat)

Coefficients:

genotype1 genotype2 genotype3 genotype4 genotype5 genotype6

194.9 184.2 191.4 198.6 194.2 197.7

...

genotype97 genotype98 genotype99 genotype100

200.3 188.8 192.9 191.8

(b) Based on the output below, the REML estimates of σ2
g and σ2

e are (2.6865)2 = 7.2174
and (9.669)2 = 93.4899 respectively. The code and output are shown below:

> library(nlme)

> set.seed(1234)

> o=lme(yield~1,random=~1|genotype,data=dat)

> o

Random effects:

Formula: ~1 | genotype

(Intercept) Residual

StdDev: 2.686537 9.669021

Number of Observations: 304

Number of Groups: 100

(c) Note that X = 1,β = µ,

Z =



1
n1×1

1
n2×1

. . .

1
n99×1

1
n100×1


, G = σ2

gI,R = σ2
eI. The BLUP for g = (g1, g2, ..., g100)′ is

ĝ = GZ ′Σ−1(y −Xβ̂Σ)

where Σ = ZGZ ′ +R. Then, the BLUP for µ+ gi is

niσ
2
g

σ2
e + niσ2

g

(
ȳi· − β̂Σ

)
=

niσ
2
g

σ2
e + niσ2

g

ȳi· +
σ2
e

σ2
e + niσ2

g

β̂Σ

where

β̂Σ = (1′Σ−11)−11′Σ−1y =

∑100
i=1

niȳi·
σ2
e+niσ2

g∑100
i=1

ni

σ2
e+niσ2

g

.
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The following output is for the empirical BLUP:

> b=fixef(o)

> u=ranef(o)

> blup=as.matrix(b+u)

> blup

(Intercept)

1 191.4947

2 189.8359

3 190.8365

...

97 192.9638

98 190.2445

99 190.9928

100 190.9641

(d) The plot of the eBLUPSs (vertical axis) vs. the BLUEs from part (a) (horizontal axis)
is produced by the R code that follows:

> blue=as.vector(ols.f$coefficients)

> plot(blue,blup)

> abline(a=0,b=1,col=4,lwd=3)

In part (c), the BLUP of µ + gi is a convex combination of the sample mean for the
ith genotype and the weighted average of sample means for all genotypes. In the middle
part of the plot, the BLUE from part (a) and BLUP are similar because the BLUEs from
part (a) are similar to β̂Σ in part (c). However, for large and small BLUEs from part
(c), the BLUPs move toward β̂Σ in part (c) due to the effects of weights.
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(e) According to the BLUEs from part (a), the top five highest yielding genotypes are as
follows:

> blue.ord = order(blue,decreasing = T)

> top5 = blue.ord[1:5]

> print(data.frame(Top5=top5,Blue=blue[top5]))

Top5 Blue

1 48 206.200

2 32 203.750

3 9 202.325

4 66 201.500

5 70 201.300

(f) According to the eBLUPs, the top five highest yielding genotypes are as follows:

> blup.ord = order(blup,decreasing = T)

> top5 = blup.ord[1:5]

> print(data.frame(Top5=top5,Blup=blup[top5]))

Top5 Blup

1 9 193.4415

2 21 193.4319

3 97 192.9638

4 70 192.6920

5 6 192.6427

(g) Note that the BLUE of µ + gi from part (a) is simply the sample mean for the ith

genotype while the BLUP of µ+ gi is a convex combination of the sample mean for the
ith genotype and the weighted average of every sample means for all genotypes. In the
BLUPs, the weights for the sample mean (the BLUE from part (a)) and the weighted
average of sample means (the BLUE from part (c)) depend on ni, σ

2
e and σ2

g . Thus, even
if a BLUE from part (a) is large, the corresponding BLUP might be smaller due to the
effects of weights. So, the top-yielding genotype according to the BLUEs from part (a)
is not so highly rated according to the BLUPs. In particular, note that n48 = 1, so that
ȳ48 = 206.2 might not be a very reliable estimate of µ + g48. The small sample size for
genotype 48 results in a large weight on β̂Σ when computing the eBLUP for genotype
48.

3. In the full model, the MLEs of θ1, θ2 are θ̂1 = ȳ1· and θ̂2 = ȳ2· , the maximized log likelihood
is

l(θ̂1, θ̂2|y) =
2∑
i=1

(
7∑
j=1

yij log θ̂i − 7θ̂i − log(
7∏
j=1

yij!)

)
= −37.10781

In the reduced model where θ∗ ≡ θ1 = θ2, the MLE of θ∗ is θ̂∗ = ȳ·· , the maximized log
likelihood is

l(θ̂∗|y) =
2∑
i=1

7∑
j=1

yij log θ̂∗ − 14θ̂∗ −
2∑
i=1

7∑
j=1

log(yij!) = −40.30237

(a) Compute AIC for the full model

AICfull = −2l(θ̂1, θ̂2|y) + 2k = 2(37.10781) + 2(2) = 78.21563
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(b) Compute BIC for the full model

BICfull = −2l(θ̂1, θ̂2|y) + k log(n) = 2(37.10781) + 2 log(14) = 79.49374

(c) Compute AIC for a simplified model in which θ1 = θ2.

AICreduced = −2l(θ̂∗|y) + 2k = 2(40.30237) + 2(1) = 82.60474

(d) Compute BIC for a simplified model in which θ1 = θ2.

BICreduced = −2l(θ̂∗|y) + k log(n) = 2(40.30237) + (1) log(14) = 83.2438

(e) Which of the two models is preferred according to AIC?
The full model is preferred because it has the smaller AIC.

(f) Which of the two models is preferred according to BIC?
The full model is preferred because it has the smaller BIC.

(g) Compute the likelihood ratio test statistic −2 log Λ for testing H0 : θ1 = θ2.

−2 log Λ = −2
(
l(θ̂∗|y)− l(θ̂1, θ̂2|y)

)
= 6.3891

(h) Find the p-value corresponding to the likelihood ratio statistic in part (g)
Under H0, −2 log Λ ∼ χ1, p−value = 0.01148.

(i) Compute a Wald statistic for testing H0 : θ1 = θ2 ⇐⇒ θ1 − θ2 = 0.
By slide 10 of set 22, we have(

ȳ1·
ȳ2·

)
·∼ N

([
θ1

θ2

]
, Î−1(θ̂)

)
where θ = (θ1, θ2)′

Î(θ̂) =
−∂2l(θ|y)

∂θ∂θ′

∣∣∣
θ=θ̂

=

[
7

θ̂1
0

0 7

θ̂2

]
=

[ 7
ȳ1·

0

0 7
ȳ2·

]

Therefore ȳ1· − ȳ2·
·∼ N

(
θ1 − θ2,

ȳ1·
7

+ ȳ2·
7

)
.

The Wald statistic for testing H0 : θ1 − θ2 = 0 is
ȳ1· − ȳ2·√

ȳ1·+ȳ2·
7

= −2.5202.

(j) Find the p-value corresponding to the Wald statistic in part (i).

Under H0, the Wald statistic
·∼ N(0, 1), p−value = 0.01173.
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R code used in problem 3:

> geno1 <- c(14,9,10,5,18,9,9)

> geno2 <- c(17,10,17,18,13,17,16)

> y = c(geno1,geno2)

> type <- as.factor(rep(c(1,2),each=7))

> dat <- data.frame(y,type)

> o = glm(y ~ type,family=poisson,data=dat) # the full model

> logLik(o)

’log Lik.’ -37.10781 (df=2)

> AIC(o)

[1] 78.21563

> BIC(o)

[1] 79.49374

> oreduce = glm(y ~ 1,family=poisson,data=dat) # the reduced model

> logLik(oreduce)

’log Lik.’ -40.30237 (df=1)

> AIC(oreduce)

[1] 82.60474

> BIC(oreduce)

[1] 83.2438

> anova(oreduce,o,test="Chisq") # Likelihood ratio test

Analysis of Deviance Table

Model 1: y ~ 1

Model 2: y ~ type

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 13 19.606

2 12 13.217 1 6.3891 0.01148 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> est=mean(geno1)-mean(geno2) # the Wald test

> var=(mean(geno1)+mean(geno2))/7

> est/sqrt(var)

[1] -2.520248

> pnorm(est/sqrt(var))*2

[1] 0.01172723
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4. (a) The likelihood function is

L(θ|y) =
n∏
i=1

θyi(1− θ)1−yiI(0 6 θ 6 1)

= θ
∑n

i=1 yi(1− θ)n−
∑n

i=1 yiI(0 6 θ 6 1)

(b) For θ ∈ [0, 1] the score equation is

d logL(θ|y)

dθ
=
d (
∑n

i=1 yi log θ + (n−
∑n

i=1 yi) log(1− θ))
dθ

= 0

=⇒
∑n

i=1 yi
θ

− n−
∑n

i=1 yi
1− θ

= 0

(c) The solution of the score equation is

θ̂ =

∑n
i=1 yi
n

= ȳ·

(d) Verify that the solution of the score equation is an MLE.

Because
d logL(θ|y)

dθ
= 0 has ȳ· as its only solution, and ∀θ ∈ [0, 1]

d2 logL(θ|y)

dθ2
= −

∑n
i=1 yi
θ2

− n−
∑n

i=1 yi
(1− θ)2

< 0

So θ̂ = ȳ· is the maximum point of the likelihood function, i.e. an MLE of θ.

(e) The Fisher information matrix is

I(θ) = −E
[
d2 logL(θ|y)

dθ2

]
= E

[∑n
i=1 yi
θ2

+
n−

∑n
i=1 yi

(1− θ)2

]
=
n

θ
+

n

1− θ
because E(yi) = θ

=
n

θ(1− θ)

(f) The inverse of the Fisher information matrix is

I−1(θ) =
θ(1− θ)

n

(g) Verify that the inverse of the Fisher information gives the exact variance of the MLE.

For i = 1, · · · , n, yi
iid∼ Bernoulli(θ), and V ar(yi) = θ(1− θ).

V ar(θ̂) = V ar(ȳ·) =
V ar(yi)

n
=
θ(1− θ)

n
= I−1(θ)
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(h) Provide an expression for an estimator of the variance of the MLE.
Plug the MLE of θ in the inverse Fisher information matrix, we have

V̂ ar(θ̂) = Î−1(θ̂) =
ȳ·(1− ȳ·)

n

5. (a) Suppose y1, . . . , y100
iid∼ Bernoulli(θ), where yi =

{
1 if plant i died

0 otherwise
for i = 1, . . . , 100.

By using the results in problem 4, we can obtain

θ̂mle = ȳ· =
17

100

and

V̂ ar(θ̂mle) =
ȳ·(1− ȳ·)

n
=

0.17× 0.83

100
.

Since θ̂mle
•∼ N(θ, V̂ ar(θ̂mle)) by slide 17 of slide set 22, an approximate 95% for the

proportion θ can be calculated as following:

θ̂mle ± z0.975

√
V̂ar(θ̂mle) =

17

100
± 1.96

√
0.17× 0.83

100

= 0.17± 0.0736

= (0.0964, 0.2436)

(b) By problem 4(b),

l(θ|y) =
n∑
i=1

yi log θ + (n−
n∑
i=1

yi) log(1− θ) = 17 log(θ) + 83 log(1− θ)

and

l(θ̂|y)− 1

2
χ2

1,1−0.05 = −45.5886− 0.5× 3.8415 = −47.5094.

Then, this problem boils down to finding solutions θ such that

g(θ) ≡ l(θ|y)− l(θ̂|y) +
1

2
χ2

1,1−0.05 = 17 log(θ) + 83 log(1− θ) + 47.5094 = 0.

With“bisect” function in R, we can find the approximate 95% confidence interval for the
proportion θ as (0.1052, 0.2515). See the following codes.

> ###objective function

> g.theta=function(theta){

+ g.theta=17*log(theta)+83*log(1-theta)+47.50935

+ return(g.theta)

+ }

> theta=seq(0,1,by=0.001)

> plot(theta, g.theta(theta),type="l",

+ main="", xlab="theta", ylab="g(theta)", ylim=c(-20,2), xlim=c(0,0.4))

> abline(a=0,b=0,col="red")
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> ###finding solution

> pracma::bisect(g.theta,0,0.2)$root

[1] 0.1051809

> pracma::bisect(g.theta,0.2,0.4)$root

[1] 0.2515061

6. Let i denote the treatment group (i = 1, 2) and j denote the subject within the treatment

group (j = 1, . . . , 350). Assume yij
ind∼ Ber(θi). Recall that for y1, . . . , yn

iid∼ Ber(θ),

θ̂mle − θ√
V̂ar(θ̂mle)

d−→ N (0, 1) as n→∞,

where θ̂mle = ȳ� and V̂ar(θ̂mle) = ȳ�(1−ȳ�)
n

.

Here, we have y1,1, . . . , y1,350
iid∼ Ber(θ1) independent of y2,1, . . . , y2,350

iid∼ Ber(θ2), so that

θ̂1 = ȳ1� = 172/350, V̂ar(θ̂1) =
ȳ1�(1− ȳ1�)

n
=

172/350(1− 172/350)

350
,

θ̂2 = ȳ2� = 137/350, V̂ar(θ̂2) =
ȳ2�(1− ȳ2�)

n
=

137/350(1− 137/350)

350
.

An approximate 95% confidence interval for θ1 − θ2 is then

θ̂1 − θ̂2 ± z0.975

√
V̂ar(θ̂1 − θ̂2)

= θ̂1 − θ̂2 ± z0.975

√
V̂ar(θ̂1) + V̂ar(θ̂2) (by independence)

= 172/350− 137/350± 1.96

√
172/350(1− 172/350)

350
+

137/350(1− 137/350)

350
= (0.027, 0.173).
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Since this confidence interval is entirely above zero, there is evidence that treatment 1 is more
effective than treatment 2 at enabling people to quit smoking for at least four weeks.
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