STAT 510 Homework 10 Solutions Spring 2020

1.

(a) Follow the steps of slide 8 of set 20:
1) Find n—rank(X) = 3—1 = 2 linearly independent vectors A = [a1, as] such that a, X =

1 1
0’. From the model we have X = [1], so one of the choices can be A = | — O
1

2) Find the MLE of 02 using w = A’y = [zl 52} as data.
1= Y3

=Ay=A(XB+e)=AXB+Ae=0+Aec=Ae
Thus w ~ N(0, A’YA) where

o2 0 071 1
A’EA:E . _01] 0 o> 0 | |1 0
0 0 o? 0 -1
L2
_"[12

And we have

det(A'SA) = 30*

(y1 —y2)” — (y1 —v2) (Y1 —y3) + (Y1 — y3)°] = lA

IA,EA —1 _
w( )" w 302

302

So w ~ N(0,0? E ;] ) and the log likelihood function is

1 1 1
l(o?|w) = —3 log(det(A'XA)) — éw’(A’EA)_lw b log(2)

The score equation is

o 1+A—O:>A2—A
do2 o2 3ot 773
Therefore the REML estimator of o2 in this case is § = 3[(y1 — 12)? — (y1 — ¥2) (41 —

y3) + (y1 — y3)°]-
(b) Follow the steps of slide 8 of set 20:
1) Find n — rank(X) = 4 — 2 = 2 linearly independent vectors A = [a1, as| such that

1 0
a;X = 0. From the model we have X = (1) | | so one of the choices can be
01
1 0
-1 0
A= 0 1
0 -1



2) Find the MLE of 02 using w = A’y = [Zl B zﬂ as data.
3 — Y4

w=Ay=A(XB+e)=AXB+Ae=0+Ae=Ae
Thus w ~ N(0, A’ A) where

o> o%/2 0 0 1 0
p {1 =10 0 o%/2  o? 0 0 -1 0
AEA_{O 0 1—1} 0 0 o?  o%)2 0 1
0 0 o%2 o 0 -1
1 0]
_ 2[
=0
01

So w ~ N(0,02I) and we can use the Gauss-Markov linear model result directly to find
the MLE.

"I -P
a_?zw( )’UJ

5 where P = 0 is the projection matrix for design matrix 0

Therefore the REML estimator of o2 in this case is 2% = L[(y1 — y2)? + (y3 — ya)?.

(a) If we use the parametrization 8 = (uq,- -, ft100) wWhere p; = p+ g;, @ = 1,...,100, the
model matrix is

r 1 -
nyx1
1
nag X1
X =
1
ngg X 1
1
L n100 X 14
_n - -1 -
1 ni
1
Mo n_2
X'X = and (X'X) ! =
1
Ng9g 199
100 L
L 4 L 7100

Thus, B\ = (X'X)"' X'y = (41, ..., J100.) and fi; = u/—l—\gl =4, for i =1,...,100. The R
code below fits the cell means model to these data and provides estimates of p; = p+ g;
using the parameterization 8 = (u1, -+, ft100)"

dat=read.table("https://dnett.github.io/S510/hwl0GenotypeYield.txt",
header = T, col.names=c("genotype","yield"),
colClasses = c("factor", "numeric"))

dat$genotype=factor(dat$genotype, levels = 1:100)

ols.f=1m(yield~O+genotype,data=dat)

vV V. + + V
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> ols.f

Call:
Im(formula = yield ~ O + genotype, data = dat)

Coefficients:
genotypel genotype2 genotyped genotype4d genotypeb genotype6
194.9 184.2 191.4 198.6 194.2 197.7

genotype97  genotype98  genotype99 genotypelO0
200.3 188.8 192.9 191.8

(b) Based on the output below, the REML estimates of o} and o7 are (2.6865)% = 7.2174

e

and (9.669)% = 93.4899 respectively. The code and output are shown below:

> library(nlme)
> set.seed(1234)
> o=1lme(yield™1,random="1|genotype,data=dat)
> 0
Random effects:
Formula: “1 | genotype
(Intercept) Residual
StdDev: 2.686537 9.669021

Number of Observations: 304
Number of Groups: 100

(c) Note that X =1,3 = pu,

nyx1

no X1

ngg X 1

1

L n100 X 14

, G = O'SI,R = ¢2I. The BLUP for g = (g1, g2, ---, g100)’ 18

g=GZ'S ' (y— XBs)
where X = ZGZ' + R. Then, the BLUP for p + g; is
2

2 2
TLZO'g B ~ B ’I’L,LO'g _ o, ~
- 5\ —Bs) =3 SVt — 5
o; +niog o; +niog O¢ +Mni0y

where
ZIOO i Ys-
i=1 024n;02

ZIOO n; .
i=1 024n;02

BE — (1/2711)711/271y —




The following output is for the empirical BLUP:

> b=fixef (o)
> u=ranef (o)
> blup=as.matrix(b+u)
> blup
(Intercept)
1 191.4947
2 189.8359
3 190.8365
97 192.9638
98 190.2445
99 190.9928

100 190.9641

The plot of the eBLUPSs (vertical axis) vs. the BLUEs from part (a) (horizontal axis)
is produced by the R code that follows:

> blue=as.vector(ols.f$coefficients)
> plot(blue,blup)
> abline(a=0,b=1,col=4,1wd=3)
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In part (c), the BLUP of u + g; is a convex combination of the sample mean for the
it" genotype and the weighted average of sample means for all genotypes. In the middle
part of the plot, the BLUE from part (a) and BLUP are similar because the BLUEs from
part (a) are similar to Bs, in part (c). However, for large and small BLUEs from part
(c), the BLUPs move toward By in part (c) due to the effects of weights.



(e) According to the BLUEs from part (a), the top five highest yielding genotypes are as
follows:

> blue.ord = order(blue,decreasing = T)

> top5 = blue.ord[1:5]

> print(data.frame(Top5=top5,Blue=blue[top5]))

Topb Blue

1 48 206.200
2 32 203.750
3 9 202.325
4 66 201.500
5 70 201.300

(f) According to the eBLUPs, the top five highest yielding genotypes are as follows:

> blup.ord = order(blup,decreasing = T)
> topb5 = blup.ord[1:5]
> print(data.frame(Top5=top5,Blup=blup[top5]))
Topbd Blup
9 193.4415
21 193.4319
97 192.9638
70 192.6920
6 192.6427

ad W -

(g) Note that the BLUE of u + g; from part (a) is simply the sample mean for the i"
genotype while the BLUP of p + g; is a convex combination of the sample mean for the
" genotype and the weighted average of every sample means for all genotypes. In the
BLUPs, the weights for the sample mean (the BLUE from part (a)) and the weighted
average of sample means (the BLUE from part (c)) depend on n;, 07 and 0. Thus, even
if a BLUE from part (a) is large, the corresponding BLUP might be smaller due to the
effects of weights. So, the top-yielding genotype according to the BLUEs from part (a)
is not so highly rated according to the BLUPs. In particular, note that nss = 1, so that
yss = 206.2 might not be a very reliable estimate of u + g48. The small sample size for
genotype 48 results in a large weight on Bg when computing the eBLUP for genotype
48.

3. In the full model, the MLEs of 6y, 6, are 6; = ;. and 6y = . , the maximized log likelihood

is
2 7 7
[(01,05]y) =) (Z yijlog 6; — 70, — log(] | yij!)) = —37.10781
1 \j=1 j=1

1=

In the reduced model where 6* = 6, = 605, the MLE of 6* is 0 = y.. , the maximized log
likelihood is

2 7

2 7
10 y) =D wijlogh* — 146" = > ) "log(yy!) = —40.30237

=1 j=1 i=1 j=1
(a) Compute AIC for the full model
AIC = —21(61, 0o|y) + 2k = 2(37.10781) + 2(2) = 78.21563
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(b) Compute BIC for the full model

BIC = —21(61,05)y) + klog(n) = 2(37.10781) + 2log(14) = 79.49374

(¢) Compute AIC for a simplified model in which 6; = 6.

AIC, equced = —21(0*|y) + 2k = 2(40.30237) + 2(1) = 82.60474

(d) Compute BIC for a simplified model in which 6, = 6,.

BICequeed = —20(0%|y) + klog(n) = 2(40.30237) + (1) log(14) = 83.2438

(e) Which of the two models is preferred according to AIC?
The full model is preferred because it has the smaller AIC.

(f) Which of the two models is preferred according to BIC?
The full model is preferred because it has the smaller BIC.

(g) Compute the likelihood ratio test statistic —2log A for testing Hy : 6; = 0.

“2logA = —2 (z<é*yy) — (b, é2|y)> — 6.3801

(h) Find the p-value corresponding to the likelihood ratio statistic in part (g)
Under Hy, —2log A ~ x1, p—value = 0.01148.

(i) Compute a Wald statistic for testing Hy : 6y = 0y <= 0, — 0, = 0.
By slide 10 of set 22, we have

where 6 = (61, 05)’

L —0%(8ly) 0 0
I 0 = —’ = 91 = 1.
(6) 0000’ lo=6 0 él [ 0 l]
2 Y2.
Therefore ;. — 3jo. ~ N (91 — 0, 571 + 5’%) ) )
The Wald statistic for testing Hy : ¢ — 05 = 0 is Yr 7Y _ —2.5202.

y1.+y2.
7

(j) Find the p-value corresponding to the Wald statistic in part (i).
Under Hy, the Wald statistic ~ N (0, 1), p—value = 0.01173.



R code used in problem 3:

genol <- c(14,9,10,5,18,9,9)

geno2 <- ¢(17,10,17,18,13,17,16)

y = c(genol,geno2)

type <- as.factor(rep(c(1,2),each=7))

dat <- data.frame(y,type)

o = glm(y ~ type,family=poisson,data=dat) # the full model
logLik (o)

log Lik.’ -37.10781 (df=2)

> AIC(o)

[1] 78.21563

> BIC(o)

[1] 79.49374

> oreduce = glm(y ~ 1,family=poisson,data=dat) # the reduced model
> logLik(oreduce)

’log Lik.’ -40.30237 (df=1)

> AIC(oreduce)

[1] 82.60474

> BIC(oreduce)

[1] 83.2438

> anova(oreduce,o,test="Chisq") # Likelihood ratio test
Analysis of Deviance Table

~V V V V V V.V

Model 1: y 7 1
Model 2: y ~ type
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 13 19.606

12 13.217 1 6.3891 0.01148 x*
Signif. codes: 0 “**x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1
> est=mean(genol)-mean(geno2) # the Wald test

> var=(mean(genol)+mean(geno2))/7
> est/sqrt(var)

[1] -2.520248

> pnorm(est/sqrt(var))*2

[1] 0.01172723



(a) The likelihood function is

Lly) = [J6"(1—60)" v 1(0<o< 1)
=1
== Vi(1— )" 2B [(0 < O < 1)

(b) For @ € [0, 1] the score equation is

d1og L(Ply) _ (S0, pilogd + (n— 0, w)log(1 —6) _
do do
Z?:l Yi n— Z?:1 Yi —0

0 1-0

—

(¢) The solution of the score equation is
) Zi__ Yi
0 = L=l It .

n

(d) Verify that the solution of the score equation is an MLE.
dlog L(0|y)

70 = 0 has ¢. as its only solution, and V6 € [0, 1]

Because

d*log L(f]y) _ _Z?:l Yi _n— > i1 Yi
dn? 62 (1—0)?

<0

So 6 = . is the maximum point of the likelihood function, i.e. an MLE of 6.

(e) The Fisher information matrix is

1(0)=-F {%}

_E {Z?:l Yy  N— Z?:l yz}

2 (-0

n because E(y;) =0

(g) Verify that the inverse of the Fisher information gives the exact variance of the MLE.
Fori=1,---,n,y ~ Bernoulli(), and Var(y;) = 6(1 — 6).
- Var(y; 6(1—0
Var(0) =Var(y) = ar(y:) = ( ) =11

n n




(h) Provide an expression for an estimator of the variance of the MLE.
Plug the MLE of 6 in the inverse Fisher information matrix, we have

~)
—
~~
D>
N~—
NS
—
—_
|
NS
~—

Var(d) =

ii . 1 if plant ¢ died ,
(a) Suppose y1, .-, Y100 A Bernoulli(f), where y; = nb an' L for i = 1,...,100.
0 otherwise

By using the results in problem 4, we can obtain

A B 17
Omie =Y. = 100

and
y.(1—y) 0.17x0.83

n 100

Since 0,,,. ~ N (0, @“(émle)) by slide 17 of slide set 22, an approximate 95% for the
proportion 6 can be calculated as following:

A [— 17 0.17 x 0.83
Hmle + 20.975 Var(@mle) = m +1.96 1—00

= 0.17 +0.0736
= (0.0964, 0.2436)

Var(fpe) =

(b) By problem 4(b),

[(0ly) = Zyl logf + (n — Zyz) log(1 — 0) = 171og(#) + 83log(1 — 0)
i=1 i=1

and
A 1
[(0ly) — 5)&170'05 = —45.5886 — 0.5 x 3.8415 = —47.5094.
Then, this problem boils down to finding solutions # such that
A 1
g(0) =1(0ly) —1(0ly) + 5)(%,1_0.05 = 171og(#) + 83log(1 — ) + 47.5094 = 0.

With “bisect” function in R, we can find the approximate 95% confidence interval for the
proportion 6 as (0.1052, 0.2515). See the following codes.

###objective function
g.theta=function(theta){

g.theta=17*log(theta)+83*log(1-theta)+47.50935

return(g.theta)

}

theta=seq(0,1,by=0.001)
plot(theta, g.theta(theta),type="1",

main="", xlab="theta", ylab="g(theta)", ylim=c(-20,2), x1im=c(0,0.4))
abline(a=0,b=0,col="red")

vV + VvV + + 4+ V V



g(theta)
-10

-15

0.0 0.1 0.2 0.3 04

theta

> ###finding solution

> pracma::bisect(g.theta,0,0.2)$root
[1] 0.1051809

> pracma::bisect(g.theta,0.2,0.4)$root
[1] 0.2515061

6. Let ¢ denote the treatment group (i = 1,2) and j denote the subject within the treatment

group (j =1,...,350). Assume y;; % Ber(6;). Recall that for yy,...,y, S Ber(#),
é\mle -0

~

— —45 N(0,1) as n — oo,
Var (61

where ﬁmle =y, and @(é\mle) — 2.0-79)

n
Here, we have y1 1, ..., Y1350 . Ber(6;) independent of ya 1, ..., Y2350 ~ Ber(6,), so that

0. STANT) y1.(1 —y 172/350(1 — 172/350
01 = 1. = 172/350, Var(6,) = g1~ o) = /350( /350)

n 350 ’
~ — . G(l—9)  137/350(1 — 137/350
b= . = 137/350,  Var(By) = 224 . p2) _ 137/ (350 /350)

An approximate 95% confidence interval for #; — 6, is then

a1 - 52 =+ 20.975 @(51 - 52)

= é\l — 52 + 20.975 \/@'(é\l) + @(@2) (by independenee)

172/350(1 — 172/350)  137/350(1 — 137/350
— 172/350 — 137/350 + 1.96\/ /350( /350) /350( /350)

350 * 350

= (0.027,0.173).
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Since this confidence interval is entirely above zero, there is evidence that treatment 1 is more
effective than treatment 2 at enabling people to quit smoking for at least four weeks.
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