
STAT 510 Homework 1 Solutions Spring 2020

1. We can express X in terms of vectors:

X
3×4

=

 1 −3 0 −3
1 −2 −1 2
2 −5 −1 −1

 =

 1
1
2

 ,

 −3
−2
−5

 ,

 0
−1
−1

 ,

 −3
2
−1

 = [x1, x2, x3, x4]

(a) Solution 1: To prove the linear dependence of columns of X, find a non-zero vector
a ∈ R4, satisfying

Xa =
4∑
i=1

aixi = 0,

where ai is ith element of a. For example, a could be (3, 1, 1, 0)′, since Xa = 3 ∗ x1 +
1 ∗ x2 + 1 ∗ x3 + 0 ∗ x4 = 0.

A way to arrive at such solution is to search for a solution to the system of the equations:
a1 ∗ 1 + a2 ∗ (−3) + a3 ∗ 0 + a4 ∗ (−3) = 0
a1 ∗ 1 + a2 ∗ (−2) ∗+a3 ∗ (−1) + a4 ∗ 2 = 0
a1 ∗ 2 + a2 ∗ (−5) + a3 ∗ (−1) + a4 ∗ (−1) = 0

Then, you can obtain a1 = −12t+ 3s, a2 = −5t+ s, a3 = s, a4 = t, where s, t ∈ R.
(You will get a in Solution 1, by choosing s = 1, t = 0.)

(b) A row reduced echelon form of X is below.

X =

 1 −3 0 −3
1 −2 −1 2
2 −5 −1 −1

→
 1 −3 0 −3

0 1 −1 5
0 1 −1 5

→
 1 0 −3 12

0 1 −1 5
0 0 0 0


Because the row echelon form has two non-zero rows, we know that matrix X has two
linearly independent row vectors. Thus, the rank of matrix X is 2. Also, by simple
inspection, it is easy to see that the third row is the sum of the first two. Thus, the rank
can be at most 2. Because the first two rows are easily seen to be linearly independent,
the rank is 2.

(c) By slide 21 of set 1,
1. Note that the matrix X has rank 2 (by 1.(b)).
Find any r × r nonsingular submatrix of X where r = rank(X) = 2. Call this matrix
W . For example, choose

W =

[
x11 x13
x21 x23

]
=

[
1 0
1 −1

]
2. Compute (W−1)′ as

(W−1)′ =

[
1 1
0 −1

]
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3. Replace each element of W in X with the corresponding element of (W−1)′. Then
the corresponding matrix is

X =

 1 −3 1 −3
0 −2 −1 2
2 −5 −1 −1

 .
4. Replace all other elements in X with zeros. The resulting matrix is 1 0 1 0

0 0 −1 0
0 0 0 0

 .
5. Transpose the resulting matrix to obtain G, a generalized inverse for X.

G =


1 0 0
0 0 0
1 −1 0
0 0 0


(d) Use the R function ginv in the MASS package .

> X=matrix(c(1,1,2,-3,-2,-5,0,-1,-1,-3,2,-1), ncol = 4)

> MASS::ginv(X)

We can obtain a generalized inverse matrix

G∗ =


6.938894e− 17 0.04761905 0.04761905
−3.703704e− 02 −0.07407407 −0.11111111

3.703704e− 02 −0.06878307 −0.03174603
−1.851852e− 01 0.20105820 0.01587302

 .
Notice that the generalized inverses for a singular matrix (such as X in this problem)
are not unique.

(e) X∗ is 3 × 2 matrix with rank 2. (rank(X) = 2 by (b)). Since x1,x3 are linearly
independent and x2,x4 can be generated by the linear combinations of x1,x3 (x2 =
3 ∗ x1 + x3, x4 = −3 ∗ x1 − 5 ∗ x3), C([c1, c3]) = C([x1,x2,x3,x4]). Thus,

X∗ =

 1 0
1 −1
2 −1

 .
Note that you can pick any two linearly independent columns of X for the columns of
X∗. Also, it is not necessary for the matrix X∗ to include any columns of X. For
example, X∗ could be

X∗ =

 1 0
0 1
1 1

 .
Any column of X∗ can be written as a linear combination of the columns of X, and
any column of X can be written as a linear combination of the columns of X∗. Thus,
C(X) = C(X∗).
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(f) All the three-dimensional vectors in the column space of X can be generated by the
linear combination of x1,x3. Also vectors in the column space of X are any vectors in
R3 whose third component is the sum of the first two.

2. Consider an arbitrary list of vectors a1,a2, ...,am where ai ∈ Rn, for i = 1, 2, ...,m. WLOG,
let a1=0. If we take c1 = a, a ∈ R\{0} and ci = 0, for i = 2, 3, ...,m, then

m∑
i=1

ciai = 0.

Since c1, c2, ..., cm are not all zero, a1,a2, ...,am are linearly dependent. Because a1,a2, ...,am
was an arbitrary list containing the zero vector, any list of vectors containing 0 is linearly
dependent.

3. Since x ∼ N (4, 1) independent of y ∼ N (1, 1), together they are multivariate normal:[
x
y

]
∼ N

([
4
1

]
,

[
1 0
0 1

])
,

where Cov(x, y) = Cov(y, x) = 0 since x ⊥ y.

Put µ = [4, 1]′ so that we can write [x, y]′ ∼ N (µ, I2×2). Using the results on non-central
chi-square distributions (slide 35 of set 1),

x2 + y2 =
[
x, y
] [x
y

]
∼ χ2

2(µ
′µ/2),

where the non-centrality parameter reduces to

µ′µ/2 =
1

2

[
4, 1
] [4

1

]
=

17

2
.

This gives us x2 + y2 ∼ χ2
2(8.5), so that

P
(√

x2 + y2 > 5
)

= P
(
x2 + y2 > 25

)
= P

(
χ2
2(8.5) > 25

)
.

We can compute the above probability in R using the pchisq() function. The documentation
brought up by ?pchisq says

“The non-central chi-squared distribution with df = n degrees of freedom and non-
centrality parameter ncp = λ [...] this is the distribution of the sum of squares of n
normals each with variance one, λ being the sum of squares of the normal means.”

This implies R parameterizes the non-centrality parameter using µ′µ = µ2
1+· · ·+µ2

n (this is the
sum of squares of normal means) rather than µ′µ/2. So, we need to double the non-centrality
parameter we obtained above when inputing the function arguments. The code

> pchisq(25, df = 2, ncp = 17, lower.tail = FALSE)
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gives the result

P
(√

x2 + y2 > 5
)

= 0.2218223.

Comments: Some students did a Monte Carlo experiment to approximate this probability;
others did a change of variable transformation or used a moment generating function to
establish the distribution of x2+y2. Noticing that we can write x2+y2 in terms of a multivariate
normal vector and applying the results in the slide set, as done above, is not an approximation
(as Monte Carlo methods are), and may be easier than a change of variable transformation
or using a moment generating function.

4. We have z1, z2, z3
iid∼ N (0, 1). By slide 31 of set 1,z1z2

z3

 ∼ N (03×1, I3×3).

(a) Let A =
[

1√
6
,− 1√

6
, 2√

6

]
. By slide 32 of set 1,

1√
6

(z1 − z2 + 2z3) =
1√
6

[
1,−1, 2

] z1z2
z3

 =
[

1√
6
,− 1√

6
, 2√

6

]z1z2
z3

 = A

z1z2
z3

 ∼ N (0,AA′).

Since AA′ = 1√
6
· 1√

6
+
(
− 1√

6

)
·
(
− 1√

6

)
+ 2√

6
· 2√

6
= 1, we have

1√
6

(z1 − z2 + 3z3) ∼ N (0, 1).

Squaring, by slide 36 of set 1, we obtain a central chi-square random variable:

1

6
(z1 − z2 + 3z3)

2 ∼ χ2
1.

(b) Notice that

z1 + z2
|z1 − z2|

=

1√
2
(z1 + z2)√

1
2
(z1 − z2)2/1

. (1)

Similar to the first step in part (a), the numerator in (1) is standard normal:

1√
2

(z1 + z2) ∼ N (0, 1).

From the result in part (a), the part of the denominator in (1) under the square root is
a central chi-square on one degree of freedom.

To have a t1 distribution, we need to show that the random variables in the numerator
and under the square root in the denominator in (1) are independent. We can do this
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by using slide 44 of slide set 1. Let z = [z1, z2]
′. Then 1√

2
(z1 + z2) = A1z where

A1 =
[

1√
2
, 1√

2

]
. Also,

1

2
(z1 − z2)2 =

1

2

[
z1 z2

] [ 1
−1

] [
1 −1

] [ z1
z2

]
= z′A2z

where

A2 =
1

2

[
1
−1

] [
1 −1

]
=

1

2

[
1 −1
−1 1

]
.

Now note that A1I2×2A2 = 01×2. Consequently, 1√
2
(z1 +z2) is independent of 1

2
(z1−z2)2

by slide 44 of slide set 1. By the result on slide 40 of set 1,

z1 + z2
|z1 − z2|

=

1√
2
(z1 + z2)√

1
2
(z1 − z2)2/1

∼ t1.

Comments:

• Many students failed to check the independence condition needed to establish a t1 dis-
tribution in (b).

• Some students did a change of variable transformation or used a moment generating
function. Others showed that z1+z2

|z1−z2| is a ratio of independent standard normal random

variables and hence Cauchy(0,1), which is the same distribution as t1.

• Another way to show that the random variables in the numerator and under the square
root in the denominator in (1) are independent:
Since [

z1 + z2
z1 − z2

]
=

[
1 1
1 −1

] [
z1
z2

]
∼ N

([
0
0

]
,

[
2 0
0 2

])
,

Cov(z1+z2, z1−z2) = 0 implies that z1+z2 and z1−z2 are independent. Thus, 1√
2
(z1+z2)

and
√

1
2
(z1 − z2)2 are independent.
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5. We are given y1, . . . , yn
iid∼ N (µ, σ2).

(a) Using properties of matrix transposition,

s2 =
1

n− 1

n∑
i=1

(yi − ȳ�)2

=
1

n− 1
(y − ȳ�1n×1)′(y − ȳ�1n×1)

=
1

n− 1

(
y − 1

n

n∑
i=1

yi1n×1

)′(
y − 1

n

n∑
i=1

yi1n×1

)

=
1

n− 1

(
y − 1

n
1n×1

n∑
i=1

yi

)′(
y − 1

n
1n×1

n∑
i=1

yi

)

=
1

n− 1

(
y − 1

n
1n×11

′
n×1y

)′(
y − 1

n
1n×11

′
n×1y

)
=

1

n− 1

[(
In×n −

1

n
1n×11

′
n×1

)
y

]′(
In×n −

1

n
1n×11

′
n×1

)
y

=
1

n− 1
y′
(
In×n −

1

n
1n×11

′
n×1

)′(
In×n −

1

n
1n×11

′
n×1

)
y

= y′
[

1

n− 1

(
In×n −

1

n
1n×11

′
n×1

)′(
In×n −

1

n
1n×11

′
n×1

)]
y

= y′By,

where

B =
1

n− 1

(
In×n −

1

n
1n×11

′
n×1

)′(
In×n −

1

n
1n×11

′
n×1

)
.

Notice that B = 1
n−1

(
In×n − P1n×1

)
, because

1

n
1n×11

′
n×1 = 1n×1(n

−1)1′n×1

= 1n×1(1
′
n×11n×1)

−11′n×1
= P1n×1 .

Comments: As seen above, we do not need to assume any model for y (e.g., we do not
need the GMMNE on slide 16 of set 2) to show the existence of B such that s2 = y′By.

(b) From part (a), we have B = 1
n−1(In×n − P1n×1). Since yi

iid∼ N (µ, σ2), it follows that

[y1, . . . , yn]′ = y ∼ N (µ,Σ) ,

where µ = µ1n×1 and Σ = σ2In×n. Clearly Σ is positive definite, assuming that σ2 > 0:
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for any non-zero t = [t1, . . . , tn]′ ∈ Rn (i.e., t 6= 0n×1), we have

t′Σt = t′[σ2In×n]t

= σ2t′In×nt

= σ2t′t

= σ2(t21 + · · ·+ t2n)

> 0

since t 6= 0n×1 implies ti 6= 0 for at least one i ∈ { 1, . . . , n }.

Set A = n−1
σ2 B. By properties of rank and the results on slide 5 of set 2 that pertain to

the rank of an orthogonal projection matrix,

rank(A) = rank

(
n− 1

σ2
· 1

n− 1
(In×n − P1n×1)

)
= rank(In×n − P1n×1)

= tr(In×n − P1n×1)

= tr(In×n)− tr(P1n×1)

= n− rank(P1n×1)

= n− rank(1n×1)

= n− 1.

As an orthogonal projection matrix, P1n×1 is symmetric, and clearly In×n is symmetric.
Hence A is also symmetric. We also have that AΣ is idempotent:

AΣAΣ =
n− 1

σ2
· 1

n− 1
(In×n − P1n×1)

[
σ2In×n

]
n− 1

σ2
· 1

n− 1
(In×n − P1n×1)

[
σ2In×n

]
= (In×n − P1n×1)(In×n − P1n×1)

= (In×n − P1n×1)

=
n− 1

σ2
· 1

n− 1
(In×n − P1n×1)

[
σ2In×n

]
= AΣ,

since In×n−P1n×1 is idempotent (this is easy to show using the fact that P1n×1 is idem-
potent).

We have now established all the ingredients that we need to apply the result on slide 31
of set 1. Hence,

y′Ay =
n− 1

σ2
s2 ∼ χ2

n−1(µ
′Aµ/2).
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The non-centrality parameter reduces to zero:

µ′Aµ/2 = [µ1n×1]
′ n− 1

σ2

1

n− 1
(In×n − P1n×1) [µ1n×1] ·

1

2

=
µ2

2σ2
1′n×1(In×n − P1n×1)1n×1

=
µ2

2σ2
(1′n×1In×n1n×1 − 1′n×1P1n×11n×1)

=
µ2

2σ2
(1′n×11n×1 − 1′n×1

[
1n×1(1

′
n×11n×1)

−11′n×1
]
1n×1)

=
µ2

2σ2
(1′n×11n×1 − 1′n×11n×1)

=
µ2

2σ2
(n− n)

= 0,

proving the desired result that
n− 1

σ2
s2 ∼ χ2

n−1.

Comments: Many students didn’t establish all the conditions listed on slide 35, such
as A is symmetric or that y is multivariate normal. A few students assumed the non-
centrality parameter was zero without any mention of µ′Aµ/2, and others only showed
minimal work in establishing that µ′Aµ/2 = 0.

6. Consider a matrix

Am×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,
so that

A′A =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · anm



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



=


∑m

i=1 a
2
i1

∑m
i=1 ai1ai2 · · ·

∑m
i=1 ai1ain∑m

i=1 ai1ai2
∑m

i=1 a
2
i2 · · ·

∑m
i=1 ai2ain

...
...

. . .
...∑m

i=1 ai1ain
∑m

i=1 ai2ain · · ·
∑m

i=1 a
2
in

 .
⇒: [“only if” part] Suppose that A = 0m×n. Clearly then A′n×m = 0n×m, which implies
A′A = 0n×m0m×n = 0n×n.

⇐: [“if” part] Suppose that A′A = 0n×n. This requires that the diagonal elements of
A′A are only zeros, that is,

∑m
i=1 a

2
ij = 0 for j = 1, . . . , n. Consequently, aij = 0 for
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j = 1, . . . , n, i = 1, . . . ,m, which implies A = 0m×n.

Thus, A = 0 ⇐⇒ A′A = 0.

Comments: This question, as well as the next one, requires a proof of an “if and only if”
statement. This means you need to consider both directions (both the “if” and “only if”
parts) to prove the desired conclusion. While it is trivial to many that A = 0 =⇒ A′A = 0,
if you don’t include this in your proof, you can’t claim to have proven the desired result.

7. ⇐: [“if” part] Suppose XA = XB. This part of the proof is trivial: multiplying both sides
by X ′ gives X ′XA = X ′XB.

⇒: [“only if” part] Conversely, suppose X ′XA = X ′XB. By properties of matrix algebra
and transpose, as well as the result of part (a), we have

X ′XA = X ′XB =⇒ X ′XA−X ′XB = 0

=⇒ X ′X(A−B) = 0

=⇒ (A−B)′X ′X(A−B) = 0

=⇒
(
X(A−B)

)′
X(A−B) = 0

=⇒ X(A−B) = 0 by part (a)

=⇒ XA−XB = 0

=⇒ XA = XB.

Therefore, X ′XA = X ′XB ⇐⇒ XA = XB.

Comments: As in problem 6, a proof of an“if and only if” statement requires both directions
to be complete. Additionally, note that depending on the matrix dimensions, we may have(

X(A−B)
)′
X(A−B) = 0n×n 6= 0m×n = X(A−B),

where m,n ∈ { 1, 2, . . . }.
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