
STAT 510 Homework 2 Solutions Spring 2019

1. (a) Let (X ′X)− be any generalized inverse of X ′X, which by definition implies

X ′X(X ′X)−X ′X = X ′X,

where X has dimension m× n, say. Put A = (X ′X)−X ′X and B = In×n, so that

X ′X (X ′X)−X ′X︸ ︷︷ ︸
A

= X ′X = X ′X In×n︸︷︷︸
B

=⇒ X ′XA = X ′XB.

By the result of problem 7 on Homework 1, it follows that XA = XB, and hence

X(X ′X)−X ′X = X.

(b) Let A be any symmetric matrix and G be any generalized inverse of A. By definition,

AGA = A.

Now, transpose both sides and use the fact that A′ = A by symmetry:

(AGA)′ = A′ =⇒ A′G′A′ = A′

=⇒ AG′A = A.

Hence, G′ is a generalized inverse of A.

(c) LetG be any generalized inverse ofX ′X. Notice thatX ′X is symmetric, so by part (b),
G′ is also a generalized inverse of X ′X. The result of part (a) holds for any generalized
inverse of X ′X, and hence holds using G′. Using the result of part (a) with G′ and then
taking transposes gives

XG′X ′X = X =⇒ (XG′X ′X)′ = X ′

=⇒ X ′[X ′]′[G′]′X ′ = X ′

=⇒ X ′XGX ′ = X ′.

Because we chose G to be any generalized inverse of X ′X,

X ′X(X ′X)−X ′ = X ′.

Comments: We could have
(X ′X)− 6= [(X ′X)−]′,

so it is important that (a) and (b) are used at the right steps in your proof so it is clear
that you aren’t trying to say (X ′X)− = [(X ′X)−]′. On a related note, we may also
have [(X ′X)−]′ 6= [(X ′X)′]−.
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(d) This part requires two proofs that PX is idempotent for full credit.
1. By part (a),

PXPX = X(X ′X)−X ′X︸ ︷︷ ︸
X

(X ′X)−X ′

= X(X ′X)−X ′

= PX .

2. By part (c),

PXPX = X(X ′X)−X ′X(X ′X)−X ′︸ ︷︷ ︸
X′

= X(X ′X)−X ′

= PX .

(e) Let G1 and G2 be any generalized inverses of X ′X. By parts (a) and (c), we have

XG1X
′ = XG1X

′XG2X
′︸ ︷︷ ︸

X′

part (c) holds for any generalized inverse of X ′X

= XG1X
′X︸ ︷︷ ︸

X

G2X
′ part (a) holds for any generalized inverse of X ′X

= XG2X
′.

Comments:

• A few students tried to use the fact that PX is the same matrix regardless of which
generalized inverse of X ′X is used, but this is what we are trying to show.

• This statement should hold for any two generalized inverse matrices of X ′X. Some
students proved this by setting G2 =(G1)

′
. This case cannot generalize this result.

(f) Let (X ′X)− be any generalized inverse of X ′X. We know that X ′X is a symmetric
matrix, so the result of part (b) says that if (X ′X)− is a generalized inverse of X ′X,
then [(X ′X)−]′ is a generalized inverse of X ′X. The result of part (e) then establishes
that X(X ′X)−X ′ = X[(X ′X)−]′X ′. Hence, these results and properties of matrix
transpose give

P ′X =
(
X(X ′X)−X ′

)′
= [X ′]′[(X ′X)−]′X ′

= X[(X ′X)−]′X ′

= X(X ′X)−X ′ by parts (d,g) as explained above

= PX .

Comments: It is important to use parts (d) and (g) at the right steps in your proof so it is
clear that you aren’t trying to say (X ′X)− = [(X ′X)−]′.
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2. Let X be an n× p matrix and y be an n× 1 vector. Suppose that z ∈ C(X) and z 6= PXy,
which implies (PXy − z) 6= 0n×1. Observe that z ∈ C(X) implies that PXz = z. Using this
result and the fact that PX is symmetric and idempotent, it follows that

(y − PXy)′(PXy − z) = (y′ − [PXy]′)(PXy − z)

= (y′ − y′P ′X)(PXy − z)

= (y′ − y′PX)(PXy − z)

= y′PXy − y′z − y′PXPXy + y′PXz

= y′PXy − y′z − y′PXy + y′PXz

= −y′z + y′z

= 0.

Now that we have (y − PXy)′(PXy − z) = 0 and (PXy − z) 6= 0, we can use the same
argument provided in the homework with a = y − PXy and b = PXy − z:

‖y − z‖2 = ‖y − PXy + PXy − z‖2

= (y − PXy + PXy − z)′ (y − PXy + PXy − z)

=
(
(y − PXy)′ + (PXy − z)′

)(
(y − PXy) + (PXy − z)

)
= (y − PXy)′(y − PXy) + 2(y − PXy)′(PXy − z) + (PXy − z)′(PXy − z)

= ‖y − PXy‖2 + ‖PXy − z‖2

> ‖y − PXy‖2 .

Hence, ‖y − z‖ > ‖y − PXy‖, which says that PXy is the unique point in C(X) that is
closest to y in Euclidean distance.

Comments: You can instead show that (y − PXy)′(PXy − z) = 0 by orthogonality, but as
this is a proof, you need to provide sufficient reasoning or work to establish this.

3. Key:
1. a

n×1
∈ C(X) ⇐⇒ a = X b

p×1
for some b

2. PXX = X by property of projection matrix

Prove that C(X) = C(PX):

a ∈ C(X) ⇐⇒ a = Xb for some b by key 1

⇐⇒ a = PXX︸ ︷︷ ︸
X

b for some b by key 2

⇐⇒ a = PX Xb︸︷︷︸
n×1

treat as PX product a n× 1 vector

⇐⇒ a = PXk for some k = Xb

=⇒ a ∈ C(PX) by key 1

So C(X) ⊆ C(PX).
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Then similarly,

g ∈ C(PX) ⇐⇒ g = PXh for some n× 1 vector h by key 1

⇐⇒ g = X(X ′X)−X ′︸ ︷︷ ︸
PX

h for some h

⇐⇒ g = X (X ′X)−X ′h︸ ︷︷ ︸
p×1

treat as X product a p× 1 vector

⇐⇒ g = Xq for some q = (X ′X)−X ′h

=⇒ g ∈ C(X) by key 1

So C(PX) ⊆ C(X). According to the results above, C(X) = C(PX).

4. Prove (X ′X)−X ′y is a solution to the normal equations X ′Xb = X ′y (by slide 8 of set 2).

Let b = (X ′X)−X ′y:

X ′Xb = X ′X(X ′X)−X ′︸ ︷︷ ︸
PX

y

= X ′PXy

= X ′y X ′PX = X ′ by property of projection matrix in slide 5 of set 2

Therefore (X ′X)−X ′y is a solution to the normal equations.

5. Suppose the Gauss-Markov model with normal errors holds (see slide 16 of slide set 2 for a
precise statement of the model).

(a) Suppose Cβ is estimable. Derive the distribution of Cβ̂, the OLSE of Cβ.

Cβ is estimable =⇒ there exists A that C = AX

Cβ̂ = C(X ′X)−X ′y

= AX(X ′X)−X ′y C = AX

= Aprojy proj = X(X ′X)−X ′

Based on the model assumptions, y ∼ N (Xβ, σ2I). Then Cβ̂ = APXy is also multi-
variate normal by slide 32 of set 1, APXy ∼ N (APXXβ,APXσ

2I(APX)′)

APXXβ = AXβ = Cβ

APXσ
2I(APX)′ = σ2APXP

′
XA

′

= σ2APXA
′ PX is symmetric and idempotent

= σ2AX(X ′X)−X ′A′

= σ2C(X ′X)−C ′

Therefore Cβ̂ ∼ N (Cβ, σ2C(X ′X)−C ′).
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(b) Now suppose Cβ is NOT estimable.

V ar(C(X ′X)−X ′y) = (C(X ′X)−X ′)σ2I(C(X ′X)−X ′)′

= σ2C(X ′X)−X ′X(X ′X)−
′
C ′

We can not simply this further when Cβ is NOT estimable.

(c) Now suppose H0 : Cβ = d is testable. Prove the result on slide 23 of set 2.

Given the hypothesis is testable (see slide 18 of set 2), c′β̂ is estimable and from the
resluts in part (a), we have c′β̂ ∼ N (c′β, σ2c′(X ′X)−c), by linear transformation,

c′β̂ − d√
σ2c′(X ′X)−c

∼ N

(
c′β − d√

σ2c′(X ′X)−c
, 1

)

let u = c′β̂−d√
σ2c′(X′X)−c

and δ = c′β−d√
σ2c′(X′X)−c

, u ∼ N (δ, 1).

Then by slide 19 of set 2,

σ̂2

σ2
∼

χ2
n−r

n− r
=⇒ w =

(n− r)σ̂2

σ2
∼ χ2

n−r

c′β̂ and σ̂2 are independent, so u and w, which are functions of c′β̂ and σ̂2, respectively,
are also independent (see Theorem 4.3.5 in Casella and Berger, 2002).
By slide 39 of set 1,

u√
w/(n− r)

=
c′β̂ − d√

σ̂2c′(X ′X)−c
∼ tn−r(δ)

Therefore, it follows a t distribution with non-central parameter δ = c′β−d√
σ2c′(X′X)−c

and

degrees of freedom n− r.

Note: The independence between u and w is necessary. We can first show independence
of c′β̂ and σ̂2. Because c′β̂ is estimable, we can write it as a′X(X ′X)−X ′y = a′PXy
for some a′, and σ̂2 = y′(I − PX)y/(n− r) = ||(I − PX)y||2/(n− r).

Now we use the independence results on slide 44 in set 1. When y ∼ N (Xβ, σ2I)
in GMMNE (slide 16 of set 2), let A1 = a′PX , and A2 = (I − PX)/(n− r). Then

A1σ
2IA′2 = a′PXσ

2I(I − PX)′/(n− r)
= σ2a′PX(I − PX)′/(n− r)
= σ2a′PX(I − PX)/(n− r)
= σ2a′(PX − PXPX)/(n− r)
= 0 because PX is idempotent.

Then we have c′β̂ ⊥ σ̂2, which impies u ⊥ w by Theorem 4.3.5 in Casella and Berger
(2002).
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