
STAT 510 Homework 3 Solutions Spring 2020

1. Consider a competition among 5 table tennis players labeled 1 through 5. For 1 ≤ i < j ≤ 5,
define yij to be the score for player i minus the score for player j when player i plays a game
against player j. Suppose for 1 ≤ i < j ≤ 5,

yij = βi − βj + εij, (1)

where β1, . . . , β5 are unknown parameters and the εij terms are random errors with mean 0.
Suppose four games will be played that will allow us to observe y12, y34, y25, and y15.

(a) Define a model matrix X so that model (1) may be written as y = Xβ + ε.

y =


y12
y34
y25
y15

 =


β1 − β2
β3 − β4
β2 − β5
β1 − β5

 +


ε12
ε34
ε25
ε15



=


1 −1 0 0 0
0 0 1 −1 0
0 1 0 0 −1
1 0 0 0 −1


︸ ︷︷ ︸

X


β1
β2
β3
β4
β5

+


ε12
ε34
ε25
ε15



(b) Is β1 − β2 estimable?

Let c′ = (1,−1, 0, 0, 0), then β1 − β2 can be written as c′β. The linear combination c′β
is estimable, if there exists a′ so that c′ = a′X by slide 7 of set 2. We can find such
a′ = (1, 0, 0, 0), so β1 − β2 is estimable. Alternatively, note that β1 − β2 is an element of
Xβ, so it is estimable.

(c) Is β1 − β3 estimable?

Let c′2 = (1, 0,−1, 0, 0), then β1 − β3 can be written as c′2β. If c′2β is estimable, then
there must be an a′2 = (a1, a2, a3, a4) so that

c′2 = a′2X

[
1 0 −1 0 0

]
=
[
a1 a2 a3 a4

] 
1 −1 0 0 0
0 0 1 −1 0
0 1 0 0 −1
1 0 0 0 −1


which implies

1 = a1 + a4; 0 = −a1 + a3; −1 = a2; 0 = −a2︸ ︷︷ ︸
contradiction!

; 0 = −a3 − a4.

So β1 − β3 is not estimable.

Comments: Some students claimed that they can not find an a′ = c′X but without any
further proof, you need show work to support your statement.
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(d) Find a generalized inverse of X ′X.
Use the R function ginv in the MASS package.

> X=matrix(c(1,0,0,1,-1,0,1,0,0,1,0,0,0,-1,0,0,0,0,-1,-1),nrow=4)

> MASS::ginv( t(X) %*% X)

a generalized inverse matrix (X ′X)− (not unique) is

(X ′X)− =


0.2222 −0.1111 0 0 −0.1111
−0.1111 0.2222 0 0 −0.1111

0 0 0.25 −0.25 0
0 0 −0.25 0.25 0

−0.1111 −0.1111 0 0 0.2222



(e) Write down a general expression for the normal equations.

X ′Xb = X ′y

(f) Find a solution to the normal equations in this particular problem involving table tennis
players.

b = (X ′X)−X ′y

=


0.2222 −0.1111 0 0 −0.1111
−0.1111 0.2222 0 0 −0.1111

0 0 0.25 −0.25 0
0 0 −0.25 0.25 0

−0.1111 −0.1111 0 0 0.2222




1 0 0 1
−1 0 1 0

0 1 0 0
0 −1 0 0
0 0 −1 −1



y12
y34
y25
y15



=


1/3 0 0 1/3
−1/3 0 1/3 0

0 1/2 0 0
0 −1/2 0 0
0 0 −1/3 −1/3



y12
y34
y25
y15

 =


y12/3 + y15/3
−y12/3 + y25/3

y34/2
−y34/2

−y25/3− y15/3


The solution is not unique since (X ′X)− is not unique.

Comments: In this problem, you need to write out b as a 5 × 1 matrix involving yij
instead of dot product of two matrices.

(g) Find the Ordinary Least Squares (OLS) estimator of β1 − β5.

Let c′ = (1, 0, 0, 0,−1) then β1 − β5 = c′β. The OLSE of c′β is c′b by slide 7 of set 2,
based on the resluts in part (f),

c′b = (y12/3 + y15/3)− (−y25/3− y15/3) = y12/3 + 2y15/3 + y25/3
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(h) Give a linear unbiased estimator of β1 − β5 that is not the OLS estimator.

We need to find a′ such that E(a′y) = β1 − β5. The simpliest one is y15 when a′ =
(0, 0, 0, 1). y15 is a linear unbiased estimatior of β1−β5, but it is not the OLSE of β1−β5.

2. Case Study 5.1.1 from The Statistical Sleuth

> install.packages("Sleuth3")

> library(Sleuth3)

(a) Create side-by-side boxplots of the response for this dataset, with one boxplot for each
treatment group.

> boxplot(Lifetime~Diet,case0501, main = "Dietary Restriction",

xlab="Treatment", ylab = "Lifetime /months")

(b) Find the SSE (sum of squared errors) for the full model with one unrestricted mean for
each of the six treatment groups.
From the code and output below,

SSEFull = 15297.42.

> fit <- lm(Lifetime~Diet,case0501)

> deviance(fit)

[1] 15297.42
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(c) Compute σ̂2 for the full model with 6 means.

σ̂2 =
SSEFull

dfFull

=
15297.42

343
= 44.6.

> deviance(fit)/fit$df

[1] 44.59888

(d) Find the SSE for a reduced model that has one common mean for the N/N85, N/R50,
N/R50lopro and N/R40 treatment groups and an unrestricted mean for each of the other
two treatment groups.
From the code and output below,

SSEReduced = 20287.99

> ## merge levels for N/N85, N/R50, N/R50lopro and N/R40

> diet1 <- case0501$Diet

> levels(diet1)[c(1,3,6,2)] <- rep("N/N85+N/R50+N/R50lopro+N/R40", 4)

> newcase <- data.frame(Lifetime = case0501$Lifetime,diet1)

> fit1 <- lm(Lifetime~diet1,newcase)

> deviance(fit1)

[1] 20287.99

(e) Use the answers from parts (b) through (d) to compute an F statistic.

H0 : E(y) ∈ C(X0)
Ha : E(y) ∈ C(X)\C(X0)

From the code and output below,

F =
(SSEReduced − SSEFull)/(dfReduced − dfFull)

SSEFull/dfFull

= 37.3

> anova(fit1, fit)

Analysis of Variance Table

Model 1: Lifetime ~ diet1

Model 2: Lifetime ~ Diet

Res.Df RSS Df Sum of Sq F Pr(>F)

1 346 20288

2 343 15297 3 4990.6 37.3 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(f) Explain to the scientists conducting this study what the F statistic in part (e) can be
used to test. Consider the context of the study and use terms non-statistician scientists
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will understand.

F statistic in part (e) indicates the variation contributed by the variable which is elimi-
nated from the full model. It can be used to test whether the full model is significantly
better than the reduced model, that is whether there is significant difference among the
N/N85, N/R50, N/R50lopro and N/R40 treatment groups. In the context of this prob-
lem, F statistic can be used to test whether the expected lifetime is affected by different
diets among mice who are treated with normal diet before weaning.

In this study, F statistic is 37.3 with p-value 0. We will reject the reduced model in favor
of the full model at 0.05 level and conclude that there is significant difference among the
N/N85, N/R50, N/R50lopro and N/R40 treatment group means.

(g) Consider an F statistic of the form given on slide 20 of the notes entitled A Review of
Some Key Linear Model Results. Provide the C matrix and d vector and compute the
F statistic corresponding to the test of the hypotheses in part (e).

H0 : Cβ = d
Ha : Cβ 6= d

where, C =

1 −1 0 0 0 0
1 0 −1 0 0 0
1 0 0 0 0 −1

 according to the order of the treatments in dataset,

q = 3 and d = 0. (Other C is possible)

F =
(Cβ̂− d)′(C(X ′X)−C′)−1(Cβ̂− d)/q

σ̂2

and

β̂ = (X ′X)−X ′y, σ̂2 =
y′(I − PX)y

n− r
.

From the code and output below, F = 37.3 the same result as in part (e).

> y=case0501$Lifetime

> I=diag(1, length(y))

> r=length(levels(case0501$Diet)) ## rank(X)

> xmat=model.matrix(~0+case0501$Diet)

> proj=function(x){x %*% MASS::ginv(t(x)%*%x) %*% t(x)}

> hat.sig2 = t(y) %*% (I-proj(xmat)) %*% y / (length(y)-r) ##hat.sigma^2

> hat.b=solve(t(xmat)%*%xmat) %*% t(xmat) %*% y ##hat.beta

> levels(case0501$Diet) # order of treatments

[1] "N/N85" "N/R40" "N/R50" "NP" "R/R50" "lopro"

> C <- matrix(c(1, -1, 0, 0, 0, 0,

1, 0, -1, 0, 0, 0,

1, 0, 0, 0, 0, -1), byrow = TRUE, nrow = 3)
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> Fstat=t(C %*% hat.b) %*% solve(C %*% solve(t(xmat)%*%xmat) %*% t(C))

%*% (C %*% hat.b)/3/hat.sig2

[,1]

[1,] 37.29968

3. There are infinitely many possible examples. One example can be given using

A =

[
1 0
0 0

]
and G =

[
1 2
3 0

]
.

We can verify that G meets the definition of a generalized inverse of A:

AGA =

[
1 0
0 0

] [
1 2
3 0

] [
1 0
0 0

]
=

[
1 0
0 0

]
= A.

Clearly A is symmetric (i.e., A = A′), yet G is not symmetric:

G =

[
1 2
3 0

]
6=
[
1 3
2 0

]
= G′.

Hence, a generalized inverse of a symmetric matrix need not be symmetric.

4. We are given that for any two matrices U and V that allow for the product matrix UV ,

rank(UV ) ≤ min { rank(U), rank(V ) } (2)

This says rank(UV ) is no larger than the smaller of the two quantities rank(U) and rank(V ),
which implies

rank(UV ) ≤ rank(U) and rank(UV ) ≤ rank(V ).

(a) Let X be any matrix. Then,

rank(X ′X) ≤ min { rank(X ′), rank(X) } by (??)

≤ rank(X)

= rank(PXX) since PXX = X

= rank(X(X ′X)−X ′X) since PX = X(X ′X)−X ′

≤ min
{

rank(X(X ′X)−), rank(X ′X)
}

by (??)

≤ rank(X ′X).

The above says that rank(X ′X) is simultaneously no larger and no smaller than rank(X),
that is,

rank(X) ≤ rank(X ′X) and rank(X) ≥ rank(X ′X),

which implies that
rank(X) = rank(X ′X).
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Comments: An alternative solution can be given by appealing to some linear algebra facts. Some
students approached this problem by stating that X and X ′X must have the same null space because

Xz = 0 ⇐⇒ X ′Xz = 0. (3)

However, a few additional steps are needed for this to establish the desired result. First, why does (??)
imply that X and X ′X have the same null space? For an m× n real-valued matrix A, its null space,
Null(A), is defined as

Null(A) = { z ∈ Rn : Az = 0 } .
From the definition, clearly (??) implies Null(X) = Null(X ′X). Now, how does this imply equality of
ranks? The rank-nullity theorem says that for any m× n matrix A,

rank(A) + dim
(

Null(A)
)

= n.

Noting that if X is m× n, then X ′X is n× n, so the rank-nullity theorem says

rank(X) + dim
(

Null(X)
)

= n = rank(X ′X) + dim
(

Null(X ′X)
)
.

Since Null(X) = Null(X ′X), the two sets must have the same dimension, implying that rank(X) =
rank(X ′X).

(b) Let X be any matrix. Then,

rank(X) = rank(PXX) since PXX = X

≤ min { rank(PX), rank(X) } by (??)

≤ rank(PX)

= rank
(
X(X ′X)−X ′

)
since PX = X(X ′X)−X ′

≤ min
{

rank(X), rank
(
(X ′X)−X ′

) }
by (??)

≤ rank(X).

Inequality in both directions implies equality; therefore,

rank(X) = rank(PX).

(c) Given WPX = W , show rank(WX)=rank(W ).

(i) rank(WX) ≤ rank(W ) by rank(UV ) ≤ min { rank(U), rank(V ) }

(ii) rank(W ) = rank
(
WPX

)
by WPX=W

= rank
(
WX(X ′X)−X ′

)
by def. of PX

≤ rank(WX) by rank(UV ) ≤ min { rank(U), rank(V ) }

∴ rank(WX) = rank(W ) by (i) and (ii).

(d) Let X be an n× p matrix. Suppose C is a q × p matrix of rank q and that there exists
a matrix A such that C = AX.

First, let us verify that C(X ′X)−C ′ is q× q. Because X is a n×p matrix, X ′X is p×p
matrix. Consequently, any generalized inverse (X ′X)− of X ′X is also p× p. Then,

C
q×p

(X ′X)−︸ ︷︷ ︸
p×p

C′
p×q
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is clearly a q × q matrix.

Next, we will show that C(X ′X)−C ′ has rank q. In order to do so, I will use following
fact: for any matrix X,

rank(X) = rank(X ′), (4)

because the rank of a matrix can be defined as the number of linearly independent rows
or columns.

Now, consider

rank
(
C(X ′X)−C ′

)
= rank(APXA

′) since C = AX

= rank
(
APXP

′
XA

′)
= rank

(
P ′XA

′) by part (a)

= rank
(
APX

)
= rank

(
APXX

)
by part(c) with W = APX

= rank
(
AX

)
= rank

(
C
)

= q.

Therefore, C(X ′X)−C ′ is a q × q matrix of rank q.

5. We have

PX = PW ⇐⇒ PX − PW = 0

⇐⇒ (PX − PW )′(PX − PW ) = 0 (Homework 1.6)

⇐⇒ P ′XPX − P ′XPW − P ′WPX + P ′WPW = 0

⇐⇒ PX − 2PXPW + PW = 0 (Symmetric and idempotent)

Show PXPW = PW next. Since each column of PW = W (W ′W )−W ′ is in the column
space C(W ), it’s also in the column space C(X). So PW = XCw for some Cw. Then we
have:

PXPW = PXXCw

= XCw

= PW

Similarly, we have PXPW = PX . So,

PX − 2PXPW + PW = 0

Then,

PX = PW
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