STAT 510 Homework 6 Due Date: 11:00 A.M., Wednesday, March 4

- 1. Consider the plant density example discussed in slide set 6.
 - (a) For each of the tests in the ANOVA table on slide 38, provide a vector c so that a test of H₀ : c'β = 0 would yield the same statistic and p-value as the ANOVA test. (You can use R to help you with the computations like we did on slides 45 and 46 of slide set 6.) Label these vectors c₁, c₂, c₃, and c₄ for the linear, quadratic, cubic, and quartic tests, respectively.
 - (b) Are $c'_1\beta$, $c'_2\beta$, $c'_3\beta$, and $c'_4\beta$ contrasts? Explain.
 - (c) Are $c'_1\beta$, $c'_2\beta$, $c'_3\beta$, and $c'_4\beta$ orthogonal? Explain.
- 2. Suppose H is a symmetric matrix. Prove that H is nonnegative definite if and only if all its eigenvalues are nonnegative. (If you wish, you may use the Spectral Decomposition Theorem in your proof.)
- 3. Consider the model

$$y_i = \mu + x_i \epsilon_i,$$

where for i = 1, ..., n, y_i is the response for observation i, μ is an unknown real-valued parameter, x_i is the *i*th known nonzero observation of an explanatory variable, $\epsilon_1, ..., \epsilon_n$ are independent and identically distributed as $N(0, \sigma^2)$, and $\sigma^2 > 0$ is an unknown variance component. Provide an expression for the best linear unbiased estimator of μ . Simplify your answer as much as possible.

4. Suppose

$$\left[\begin{array}{c} y_1\\ y_2 \end{array}\right] \sim N\left(\left[\begin{array}{c} \mu\\ 2\mu \end{array}\right], \left[\begin{array}{c} 1/2 & 0\\ 0 & 1 \end{array}\right] \right).$$

- (a) A linear unbiased estimator of μ has the form $a'y = a_1y_1 + a_2y_2$ for some real-valued constants a_1 and a_2 . What has to be true about a_1 and a_2 in order for $a'y = a_1y_1 + a_2y_2$ to be unbiased?
- (b) Write a simplified expression for the variance of $a'y = a_1y_1 + a_2y_2$ in terms of a_1 and a_2 .
- (c) Use the result of part (a) to write the answer to part (b) in terms of a single variable.
- (d) Use parts (a) through (c) and a calculus-based argument to derive the BLUE of μ .
- (e) Use the result on slide 12 of slide set 10 to determine the BLUE of μ .
- 5. Consider the Aitken Model with normal errors described on slide 18 of slide set 10. As usual, assume that y is n × 1 and that the rank of X is r. Suppose c'β is estimable. Give an expression for a 95% confidence interval for c'β in terms of y, X, V, c, n, and r. [Hint: Write the expression for the confidence interval in terms of the transformed model that involves z and W, and then make substitutions.]