
STAT 510 Homework 6 Solutions Spring 2020
1. (a) In general, we have H0j : (Pj+1 − Pj)Xβ = 0 in ANOVA F test, so cj is any non-zero

row of (Pj+1 − Pj)X.

So, we can obtain using R code below as we did on slides 45 and 46 of slide set 6.

c1
′ =
(
2, 1, 0, −1, −2

)
for linear trend

c2
′ =
(
2, −1, −2, −1, 2

)
for quadratic trend

c3
′ =
(
1, −2, 0, 2, −1

)
for cubic trend

c4
′ =
(
1, −4, 6, −4, 1

)
for quartic trend

> d=read.delim("https://dnett.github.io/S510/PlantDensity.txt")

> names(d)=c("x","y")

> n=nrow(d)

> x=(d$x-mean(d$x))/10

> x1=matrix(1,nrow=n,ncol=1)

> x2=cbind(x1,x)

> x3=cbind(x2,x^2)

> x4=cbind(x3,x^3)

> x5=matrix(model.matrix(~0+factor(x)),nrow=n)

> proj <- function(x) {

+ x %*% MASS::ginv(t(x) %*% x) %*% t(x)

+ }

> p1=proj(x1)

> p2=proj(x2)

> p3=proj(x3)

> p4=proj(x4)

> p5=proj(x5)

> ((p2-p1)%*%x5)[1,] *5 ## linear

[1] 2 1 0 -1 -2

> ((p3-p2)%*%x5)[1,] *7 ## quadratic

[1] 2 -1 -2 -1 2

> ((p4-p3)%*%x5)[1,] *10 ## cubic

[1] 1 -2 0 2 -1

> ((p5-p4)%*%x5)[1,] *70 ## quartic

[1] 1 -4 6 -4 1

(b) All c′iβ are contrasts because c′i1 = 0 for i = 1, 2, 3, 4.

(c) By slide 3 of set 9, any two estimable linear combinations c′iβ and c′jβ are orthogonal if
and only if c′i(X

′X)−cj = 0 for i 6= j. In the plant density example of slide set 6, the
model matrix is

X =



1
3×1

1
3×1

1
3×1

1
3×1

1
3×1



X ′X =


3

3
3

3
3

 and (X ′X)−1 =


1
3

1
3

1
3

1
3

1
3


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Thus in this case, c′i(X
′X)−cj = c′icj/3, so that linear combinations c′iβ and c′jβ are

orthogonal if and only if c′icj = 0.
In this problem, all c′iβ’s are orthogonal because c′icj = 0 for all pairs {(i, j)|i 6= j}
where i, j = 1, 2, 3, 4.

2. Given H is a symmetric matrix, by spectral decompositon theorem H =
n∑

i=1

λi pi p
′
i, where

pi’s are orthonomal eigenvectors of H .
“ =⇒ ” part:

By definition, H is nonnegative definite =⇒ p′iHpi ≥ 0 for any pi that i = 1, · · · , n.

p′iHpi = p′i

(
n∑

j=1

λj pj p
′
j

)
pi

=
n∑

j=1

λj p
′
ipj p

′
jpi

= λi p
′
ipi p

′
ipi p′ipj = 0 for all i 6= j

= λi p′ipi = 1

Therefore λi ≥ 0 for i = 1, · · · , n.

“⇐=” part: given λi ≥ 0 for i = 1, · · · , n, need to prove y′Hy ≥ 0 for any n × 1 vector y.
By the Spectral Decomposition Theorem, H = Pdiag(λ1, . . . , λn)P ′, where P = [p1, . . . ,pn]
and PP ′ = P ′P = I. For j = 1, . . . , n, let xj = p′jy = y′pj.

y′Hy = y′

(
n∑

j=1

λj pj p
′
j

)
y by spectral decompositon

=
n∑

j=1

λj y
′pj p

′
jy

=
n∑

j=1

λj x
2
j

≥ 0
because each term λjx

2
j is the product of nonnegative terms

and is thus nonnegative

So, H is nonnegative definite ⇐⇒ all its eigenvalues are nonnegative.

3. yi = µ+ xiεi for i = 1, · · · , n and εi
iid∼ N(0, σ2).

we can write the model as

y = 1
n×1
· µ+ ε, where ε =


x1ε1
x2ε2

...
xnεn

 ∼ N(0, σ2V )
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V = diag(x21, x
2
2, · · · , x2n) and is positive definite because all xi’s are nonzero. So this is an

Aitken model with normal errors.
µ is obviously estimable, so the BLUE is

µ̂ =
(
1′V −11

)−
1′V −1y

=
(
[x−21 , x−22 , · · · , x−2n ]1

)−1 (
[x−21 , x−22 , · · · , x−2n ]y

)
=

n∑
i=1

x−2i yi

n∑
i=1

x−2i

4. (a) Note that E(a′y) = E(a1y1 + a2y2) = a1E(y1) + a2E(y2) = (a1 + 2a2)µ. In order for
a′y = a1y1 + a2y2 to be an unbiased estimator of µ, a1 + 2a2 = 1 because (a1 + 2a2)µ
must be µ for all µ in R.

(b)

V ar(a′y) = a′V ar(y)a = (a1, a2)

(
1/2 0
0 1

)(
a1
a2

)
=

1

2
a21 + a22.

(c) Note that a1 + 2a2 = 1 in part (a). Using this fact and the result in part (b),

V ar(a′y) =
1

2
a21 + a22 =

1

2
a21 +

(
1− a1

2

)2

=
3

4
a21 −

1

2
a1 +

1

4

(d) To be the BLUE of µ, a′y must be an unbiased estimator with the minimum variance.
Using parts (a) through (c), an unbiased estimator of µ has the variance of the form in
terms of a single variable a1 as follows:

V ar(a′y) =
3

4
a21 −

1

2
a1 +

1

4
set
= f(a1)

To find the minimum variance, we need to check the following:

d

da1
f(a1) =

3

2
a1 −

1

2
set
= 0,

d2

da21
f(a1) =

3

2
> 0.

f(a1) achieves the minimum at a1 = 1
3
. Therefore, a2 = 1−a1

2
= (1 − 1

3
)/2 = 1

3
and

1
3
y1 + 1

3
y2 is the BLUE of µ.

(e) Consider the following model:

y = Xµ+ ε, E(ε) = 0 and V ar(ε) = σ2V
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where X =

(
1
2

)
, σ2 = 1 and V =

(
1/2 0
0 1

)
is a positive definite variance matrix. This

model becomes the Aitken model on slide 8 of slide set 10. Then, using the result on
slide 12 of slide set 10, µ̂GLS becomes the BLUE of estimable µ where

µ̂GLS =
(
X ′V −1X

)−1
X ′V −1y

=

((
1
2

)′(
2 0
0 1

)(
1
2

))−1(
1
2

)′(
2 0
0 1

)(
y1
y2

)
= (6)−1(2y1 + 2y2)

=
1

3
y1 +

1

3
y2

which is the same result in part (d).

5. The Aitken Model with normal errors described on slide 18 of slide set 10 can be transformed
to z = Wβ + δ, δ ∼ N(0, σ2I), where z=V −1/2y, W=V −1/2X and δ=V −1/2ε. With this
transformation, we can apply all the results we have established previously to the Gauss-
Markov model with normal errors. Thus, the 95% confidence interval for estimable c′β is

c′(W ′W )−W ′z ± tn−rank(W ) 0.975

√
z′(I−PW )z
n−rank(W )

c′(W ′W )−c.

Replacing W with V −1/2X and z with V −1/2y and simplifying yields

c′(X ′V −1X)−X ′V −1y±tn−r,0.975×
√

(y−X(X′V −1X)−X′V −1y)′V −1(y−X(X′V −1X)−X′V −1y)
n−r c′(X ′V −1X)−c
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